Department of Mathematics and Statistics University of Massachusetts Amherst

BASIC EXAM: TOPOLOGY - January 13, 2016

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Masters level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

- 1. Consider the following topologies on the real line \mathbb{R} :
 - (i) trivial topology, (ii) discrete topology, (iii) finite complement topology.

For each topology, determine, with explanations, which one of the following functions from $\mathbb{R} \to \mathbb{R}$ (both the domain and the range taken with the same topology)

$$f(x) = x^2$$
, $g(x) = e^x$, $h(x) = sin(x)$

are (a) continuous, (b) open maps, (c) embeddings.

- 2. For a subset A of a topological space X, let $\underline{i(A)}$ denote the interior of A in X, \overline{A} denote its closure in X, and $Bd(A) := \overline{A} \cap \overline{X} \setminus \overline{A}$ the boundary of A.
 - (a) Show that i(A) and Bd(A) are disjoint and $\bar{A} = i(A) \cup Bd(A)$.
 - (b) Show that $Bd(A) = \emptyset$ if and only if A is both open and closed in X.
 - (c) If A is open, is it always true that $A = i(\bar{A})$? Prove or give a counter-example.
- 3. A space is called *totally disconnected* if the only connected subsets are single point sets.
 - (a) Suppose $\{X_{\alpha}\}_{{\alpha}\in A}$ is a family of totally disconnected spaces. Show that $X_A := \prod_{{\alpha}\in A} X_{\alpha}$ equipped with the product topology, is totally disconnected.
 - (b) Let A be a countably infinite set, and let $X_{\alpha} = \{0, 1\}$ (a 2 point space with the discrete topology) for each $\alpha \in A$. Show that X_A is not a discrete space.
- 4. Let $f: X \to \mathbb{R}$ be a continuous function on a compact metric space. Prove that f is uniformly continuous.
- 5. Let X be an n-dimensional compact, connected manifold with boundary $\partial X \neq \emptyset$. Prove that its boundary $Y = \partial X$ is an (n-1)-dimensional manifold. Is Y necessarily compact? Connected? Justify your answers.
- 6. Prove that none of the following spaces are homeomorphic to each other:

$$\mathbb{R}^2$$
, $S^1 \times \mathbb{R}$, S^2 , $S^1 \times S^1$, \mathbb{R}^3 , S^3 .

(Here S^n denotes the *n*-dimensional unit sphere in \mathbb{R}^{n+1} .)

7. Let \mathbb{RP}^2 denote the real projective plane and $T^2 = S^1 \times S^1$ denote the 2-torus. Show that the composition $g \circ f$ of any two continuous maps $f: S^1 \to \mathbb{RP}^2$ and $g: \mathbb{RP}^2 \to T^2$ is homotopic to a constant map.