COMPLEX ANALYSIS QUALIFYING EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2015

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems and
 - Master's level: 45 points with 3 questions essentially complete
 - Ph. D. level: 55 points with 4 questions essentially complete
- Justify your reasoning!
- **1.** (a) Write down Cauchy–Riemann equations in polar coordinates. (b) Use part (a) to show that the main branch of Log is a holomorphic function. Here we define $\text{Log}(re^{i\theta}) := \ln(r) + i\theta$ for r > 0, $-\pi < \theta < \pi$.
- **2.** Prove the Schwarz reflection principle. Namely, let $\Omega \subset \mathbb{C}$ be an open set symmetric under complex conjugation. Let

$$\Omega^+ = \Omega \cap \{z \mid \operatorname{Im}(z) > 0\}, \quad \Omega^- = \Omega \cap \{z \mid \operatorname{Im}(z) < 0\}, \quad I = \Omega \cap \mathbb{R}.$$

Suppose f(z) is a holomorphic function in Ω^+ which extends continuously to $\Omega^+ \cup I$. Then f(z) can be extended to a holomorphic function in Ω .

3. Find a holomorphic bijection between the region

$$\{z : |z| < 2, \operatorname{Im}(z) > 1\}$$

and the region

$$\{z : |z| < 2, \operatorname{Im}(z) < 1\}.$$

4. (a) Determine the number of zeroes of

$$z^5 - z^4 + 2z^3 - 3z^2 - 5$$

in the disk $\{z : |z| < 3\}$.

- (b) Evaluate the integral $\int_C \frac{z^4-2z^2+z-3}{z^5-z^4+2z^3-3z^2-5}dz$, where C is the positively-oriented boundary of the disc from part (a).
 - 5. Evaluate the integral

$$\int_0^\infty \frac{x^{1/3}}{x^2 + 9x + 8} dx$$

Justify all your steps.

- **6.** Let z_0 be an isolated singularity of an analytic function f. Prove that if Re(f) is bounded from above, then z_0 is a removable singularity.
- 7. For each of the following functions, find all isolated singular points, classify them (into removable singularities, poles, essential singularities), and find residues at all isolated singular points:

(a)
$$z^2 e^{\frac{1}{z+1}}$$
; (b) $\cot^2(z)$; (c) $\frac{z^{35}}{1-z^{16}}$.

- **8.** Find all Laurent series of $f(z)=\frac{2z}{z^2-4z+3}$ centered at the origin and specify for each the largest region over which it represents the function.
- **9.** Prove the open mapping theorem: a holomorphic non-constant function $f:\Omega\to\mathbb{C}$ is open, i.e. f(U) is open for any open set $U\subset\Omega$. Here $\Omega\subset\mathbb{C}$ is a connected open set.
- **10.** Let $F(z,w)=w^n+c_1(z)w^{n-1}+\cdots+c_n(z)w^n$, where $c_1(z),\ldots,c_n(z)$ are entire functions. Assume that the polynomial F(0,w) has a unique and simple zero w_0 in the open unit disk $D:=\{w:|w|<1\}$ and F(0,w) does not vanish on the boundary $\{w:|w|=1\}$.
 - (a) Prove that the integral

$$\frac{1}{2\pi i} \int_{|w|=1} \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} dw$$

is constantly equal to 1, for z in some non-empty connected open neighborhood U of 0 in the complex plane.

(b) Prove that the integral

$$\frac{1}{2\pi i} \int_{|w|=1} w \frac{\frac{\partial F}{\partial w}(z,w)}{F(z,w)} dw$$

is a well defined holomorphic function $\varphi(z)$ of z in some non-empty connected open neighborhood U of 0 in the complex plane. Moreover, $\varphi(0)=w_0$ and $F(z,\varphi(z))=0$, for all $z\in U$.