COMPLEX ANALYSIS QUALIFYING EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2015

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems and
- Master's level: 45 points with 3 questions essentially complete
- Ph. D. level: 55 points with 4 questions essentially complete
- Justify your reasoning!

1. (a) Write down Cauchy-Riemann equations in polar coordinates. (b) Use part (a) to show that the main branch of Log is a holomorphic function. Here we define $\log \left(r e^{i \theta}\right):=\ln (r)+i \theta$ for $r>0,-\pi<\theta<\pi$.
2. Prove the Schwarz reflection principle. Namely, let $\Omega \subset \mathbb{C}$ be an open set symmetric under complex conjugation. Let

$$
\Omega^{+}=\Omega \cap\{z \mid \operatorname{Im}(z)>0\}, \quad \Omega^{-}=\Omega \cap\{z \mid \operatorname{Im}(z)<0\}, \quad I=\Omega \cap \mathbb{R} .
$$

Suppose $f(z)$ is a holomorphic function in Ω^{+}which extends continuously to $\Omega^{+} \cup I$. Then $f(z)$ can be extended to a holomorphic function in Ω.
3. Find a holomorphic bijection between the region

$$
\{z:|z|<2, \operatorname{Im}(z)>1\}
$$

and the region

$$
\{z:|z|<2, \operatorname{Im}(z)<1\} .
$$

4. (a) Determine the number of zeroes of

$$
z^{5}-z^{4}+2 z^{3}-3 z^{2}-5
$$

in the disk $\{z:|z|<3\}$.
(b) Evaluate the integral $\int_{C} \frac{z^{4}-2 z^{2}+z-3}{z^{5}-z^{4}+2 z^{3}-3 z^{2}-5} d z$, where C is the positivelyoriented boundary of the disc from part (a).
5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{x^{2}+9 x+8} d x
$$

Justify all your steps.
6. Let z_{0} be an isolated singularity of an analytic function f. Prove that if $\operatorname{Re}(f)$ is bounded from above, then z_{0} is a removable singularity.
7. For each of the following functions, find all isolated singular points, classify them (into removable singularities, poles, essential singularities), and find residues at all isolated singular points:
(a) $z^{2} e^{\frac{1}{z+1}}$;
(b) $\cot ^{2}(z)$;
(c) $\frac{z^{35}}{1-z^{16}}$.
8. Find all Laurent series of $f(z)=\frac{2 z}{z^{2}-4 z+3}$ centered at the origin and specify for each the largest region over which it represents the function.
9. Prove the open mapping theorem: a holomorphic non-constant function $f: \Omega \rightarrow \mathbb{C}$ is open, i.e. $f(U)$ is open for any open set $U \subset \Omega$. Here $\Omega \subset \mathbb{C}$ is a connected open set.
10. Let $F(z, w)=w^{n}+c_{1}(z) w^{n-1}+\cdots+c_{n}(z) w^{n}$, where $c_{1}(z), \ldots, c_{n}(z)$ are entire functions. Assume that the polynomial $F(0, w)$ has a unique and simple zero w_{0} in the open unit disk $D:=\{w:|w|<1\}$ and $F(0, w)$ does not vanish on the boundary $\{w:|w|=1\}$.
(a) Prove that the integral

$$
\frac{1}{2 \pi i} \int_{|w|=1} \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} d w
$$

is constantly equal to 1 , for z in some non-empty connected open neighborhood U of 0 in the complex plane.
(b) Prove that the integral

$$
\frac{1}{2 \pi i} \int_{|w|=1} w \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} d w
$$

is a well defined holomorphic function $\varphi(z)$ of z in some non-empty connected open neighborhood U of 0 in the complex plane. Moreover, $\varphi(0)=w_{0}$ and $F(z, \varphi(z))=0$, for all $z \in U$.

