ADVANCED CALCULUS/LINEAR ALGEBRA BASIC EXAM

Complete 7 of the following 9 problems. Please show your work. The passing standards are:

- Master's level: 60% with three questions essentially complete (including one from each part);
- Ph.D. level: 75% with two questions from each part essentially correct.

Linear Algebra

(1) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation.
(a) Show that there is the following containment of subspaces:

$$
\mathbb{R}^{n} \supseteq \operatorname{Im}(T) \supseteq \operatorname{Im}\left(T^{2}\right) \supseteq \operatorname{Im}\left(T^{3}\right) \supseteq \ldots
$$

(b) Show that that for some positive integer $m \geq 1$, there is equality

$$
\operatorname{Im}\left(T^{k}\right)=\operatorname{Im}\left(T^{k+1}\right) \text { for all } k \geq m .
$$

(c) Let $W=\operatorname{Im}\left(T^{m}\right)$ for the m in part (b). Thus T maps W to W. Show that the restriction of T to the subspace W is invertible.
(2) Consider the following matrix, which is in Jordan canonical form:

$$
A=\left(\begin{array}{ccccc}
3 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) .
$$

(a) Write A as the sum $D+N$, where D is a diagonal matrix, N is a nilpotent matrix, and D and N commute with each other. Recall a matrix N is nilpotent if it satisifes $N^{k}=0$ for some positive integer k.
(b) Compute A^{2015}.
(c) Find the Jordan canonical form of A^{2015}.
(3) Let V be the real vector space of continuous functions from \mathbb{R} to \mathbb{R}. For $f(x), g(x) \in V$, define

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Show that $\langle\cdot, \cdot\rangle$ defines an inner product on V. Namely, prove that the above form is bilinear, symmetric, and positive definite.
(b) Let V_{3} be the subspace of V of dimension four consisting of polynomials of degree at most 3. That is,

$$
V_{3}:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{i} \in \mathbb{R}\right\} .
$$

Find a basis $\left\{p_{0}, p_{1}, p_{2}, p_{3}\right\}$ of V_{3} satisfying:

- $p_{i}(1)=1$,
- degree $\left(p_{i}\right)=i$, and
- $\left\langle p_{i}, p_{j}\right\rangle=0$ if $i \neq j$.
(4) Let A and B be two $n \times n$ complex matrices. Let $f_{B}(x):=\operatorname{det}(x I-B)$ be the characteristic polynomial of B. Show that the $n \times n$ matrix $f_{B}(A)$ is invertible if and only if A and B have no common eigenvalue.

Advanced Calculus

(5) Let $\mathbf{F}(x, y)=\left(\frac{1}{2} y^{2}-y, x y\right)$ be a vector field in the plane. Denote by C the triangular path in the plane with vertices $(0,0),(2,0)$, and $(0,4)$, traversed counterclockwise. Compute the line integral

$$
\int_{C} \mathbf{F} \bullet \mathrm{dr}
$$

in two ways:
(a) Directly, by parametrizing C.
(b) Using Green's theorem.
(6) Let $f(x, y)=2 x^{2}+x+y^{2}-2$. Consider the domain $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 4\right\}$.
(a) Explain, in one sentence, why $f(x, y)$ has both a maximum and minimum value on D.
(b) Find the maximum and minimum values on D and the points in D where they are attained.
(7) Let $f:[-1,1] \rightarrow \mathbf{R}$ be a continuous, one-to-one function. Show that f is either increasing or decreasing.
(8) For any positive integer m, denote as usual $m!:=1 \times 2 \times \cdots \times m$. We also define $0!:=1$.
(a) For any positive integer n, show that

$$
(n-1)!\leq n^{n} e^{-n} e \leq n!
$$

Hint: Consider (finite) Riemann sums associated to the integral $\int_{1}^{n} \ln x d x$.
(b) Deduce that the sequence $\left\{a_{n}\right\}$ with

$$
a_{n}:=\frac{(n!)^{1 / n}}{n}
$$

converges to $1 / e$.
(9) Determine whether or not the series

$$
\frac{\sin (x)}{1}+\frac{\cos (2 x)}{4}+\frac{\sin (3 x)}{9}+\frac{\cos (4 x)}{16}+\frac{\sin (5 x)}{25}+\frac{\cos (6 x)}{36}+\ldots
$$

is uniformly convergent on $[-\pi, \pi]$. Also, determine whether or not the function defined by the series is continuous on $[-\pi, \pi]$.

