DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS

Wednesday September 2, 2015
10:00AM - 1:00PM

Do five of the following problems. All problems carry equal weight.
Passing level: 75% with at least three substantially complete solutions, including one from the ODE part (Questions 1-3) and one from the PDE part (Questions 4-7).
(1) Consider the linear system $\dot{x}=A x$ with coefficient matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

We say that $x(t)$ grows linearly if $\lim _{t \rightarrow+\infty}|x(t)| / t=c>0$ and superlinearly if $\lim _{t \rightarrow+\infty}|x(t)| / t=+\infty$. Find all initial conditions $x(0)$ such that their solutions $x(t)$ are (a) bounded; (b) grow linearly; (c) grow superlinearly.
(2) a) Consider a planar autonomous system $\dot{x}=f(x)$, for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, and assume that the vector field $f(x)$ is divergence free, that is,

$$
\operatorname{div} f \doteq \frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}=0 \quad \text { identically in } \mathbb{R}^{2} .
$$

Prove that this dynamical system has no (isolated) periodic orbits.
b) Construct an explicit vector field, $f(x)$, on \mathbb{R}^{2} with $\operatorname{div} f>0$ in $|x|<1$, and div $f<0$ in $|x|>1$, such that the unit circle, $|x|=1$, is an isolated limit cycle for f.
(3) Consider the nonautonomous, nonlinear, second-order differential equation

$$
\frac{d^{2} x}{d t^{2}}+(1-\alpha \sin t)\left[\frac{d x}{d t}\right]^{3}+x=0
$$

where α is a constant satisfying $0<\alpha<1$. Prove that the origin, that is, $(x, \dot{x})=(0,0)$, is an asymptotically stable fixed point for this equation.
(4) a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth and bounded function. Use the method of characteristics to find the solution of the following Cauchy problem,

$$
\begin{aligned}
u_{y}-x u_{x} & =-u, \quad x \in \mathbb{R}, y>0 \\
u(x, 0) & =f(x) .
\end{aligned}
$$

What is $\lim _{y \rightarrow+\infty} u(x, y) ?$
b) Let α, β, γ be real constants and $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a smooth function. Use the method of characteristics to solve the following Cauchy problem,

$$
\begin{aligned}
\alpha u_{x_{1}}+\beta u_{x_{2}}+u_{x_{3}} & =-\gamma u, \quad x_{3}>0 \\
u\left(x_{1}, x_{2}, 0\right) & =\phi\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(5) Use d'Alembert's formula and Duhamel's principle to solve the following Cauchy initial value problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=\cos x \\
u(x, 0)=\sin x, \quad u_{t}(x, 0)=1+x
\end{array}\right.
$$

(6) Let $\Omega \subset \mathbb{R}^{2}$ be a smooth domain and $u=u(x, t)$ a smooth solution to the following initial boundary value problem

$$
\begin{cases}u_{t}=\Delta u-u^{3} & \text { in } \quad x \in \Omega, t>0 \\ u(x, 0)=0, & \text { for all } \quad x \in \Omega \\ u(x, t)=0 & \text { for all } \quad x \in \partial \Omega, t \geq 0\end{cases}
$$

Show that $u(x, t)=0$ for all $x \in \Omega$ and $t \geq 0$.
(7) We say that a function $u \in C^{2}(\bar{\Omega})$ is subharmonic if $-\Delta u \leq 0$ in Ω.
(a) Prove that if $u \in C^{2}(\bar{\Omega})$ is subharmonic then

$$
u(x) \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) d y \quad \text { for all } B(x, r) \subset \Omega
$$

(b) Prove that therefore, $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$.
(c) Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth and convex function. Assume v is harmonic and let $u(x):=\varphi(v(x))$. Prove that u is subharmonic.
(d) Prove that $u:=|D v|^{2}$ is subharmonic whenever v is harmonic.

