Department of Mathematics and Statistics
 University of Massachusetts
 ADVANCED EXAM - DIFFERENTIAL EQUATIONS JANUARY 2015

Do five of the following seven problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. Consider the two-dimensional dynamical system

$$
\begin{aligned}
\dot{x} & =y, \\
\dot{y} & =-x^{3},
\end{aligned}
$$

(a) Show that the linearization of this system at the equilibrium point $\left(x^{*}, y^{*}\right)=(0,0)$ is unstable.
(b) Use a Lyapunov function argument to show that the nonlinear system itself is stable.
(c) Discuss why these two facts are not contradictory.
2. (a) Exhibit a two-dimensional smooth dynamical system,

$$
\begin{aligned}
\dot{x} & =f(x, y), \\
\dot{y} & =g(x, y),
\end{aligned}
$$

for which the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is a limit cycle; a and b are arbitrary (positive) semi-axes.
(b) Exhibit a three-dimensional dynamical system,

$$
\begin{aligned}
\dot{x} & =f(x, y, z), \\
\dot{y} & =g(x, y, z), \\
\dot{z} & =h(x, y, z),
\end{aligned}
$$

for which the space curve $x^{2}+y^{2}=1, x+y+z=1$ is an attractor.
3. Consider an ODE system written in the form

$$
\dot{x}=A x+g(x), \quad \text { for } x \in \mathbb{R}
$$

where $g(x)$ is a smooth function and $|g(x)|=O\left(|x|^{2}\right)$ as $|x| \rightarrow 0$. Suppose that the coefficient matrix A has one strictly positive (real) eigenvalue. Prove that the origin $x^{*}=0$ is unstable.
4. Consider a harmonic function $u(x, y)$ on the rectangular domain, $R_{L}=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<L, 0<y<1\right\}$, where L is the length.
(a) For fixed $L>0$, find the explicit solution $u(x, y)$ having the boundary conditions: $u=0$ on the sides with $y=0, y=1, x=0$, and $u(L, y)=b \sin \pi y$ on the side with $x=L ; b$ is any positive constant.
(b) Now consider a sequence of rectangles $R_{L_{n}}$ with $L_{n} \rightarrow+\infty$, and allow $b=b(L)$ to depend on L. What growth condition on $b(L)$ is needed to ensure that the corresponding solution sequence, $u_{n}(x, y)$, tends to zero pointwise as $L_{n} \rightarrow+\infty$?
(c) Construct a harmonic function $v(x, y)$ on the semi-infinite domain, $R_{\infty}=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\infty, 0<y<1\right\}$, such that $v=0$ on the boundary of R_{∞}, and yet v is positive throughout the interior of R_{∞}.
5. Consider the elliptic boundary-value problem

$$
\begin{aligned}
\Delta u+\alpha u & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

on a smooth bounded domain Ω in R^{n}, where $\alpha \in \mathbb{R}$ is a constant, and $f \in L^{2}(\Omega)$.
(a) Suppose that $\alpha<\lambda_{1}(\Omega)$, the smallest eigenvalue of $-\triangle$ on Ω. Show that this boundary-value problem has a unique weak solution $u \in H_{0}^{1}(\Omega)$.
(b) Suppose instead that $\alpha=\lambda_{1}(\Omega)$. What condition on f is required to ensure the existence of a weak solution? What can be said about the uniqueness of weak solutions in this case?
6. Consider the initial-boundary-value problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =0 & & \text { in } 0<x<+\infty, t>0 \\
u & =\sin \omega t & & \text { on } x=0, t>0 \\
u & =0 & & \text { for } 0<x<+\infty, t=0
\end{aligned}
$$

Assume that the classical solution exists and tends to zero as $x \rightarrow+\infty$. Note that this heat equation is posed on the semi-infinite line, with an inhomogeneous boundary condition which oscillates with a given frequency ω.
(a) First, ignore the initial condition and explicitly construct a timeperiodic solution, $U(x, t)$, that satisfies the PDE and its timeperiodic boundary condition.
HINT: Use separation of variables, $U(x, t)=F(x) G(t)$, and allow the separation constant to be complex.
(b) Next, show that the solution, $u(x, t)$, of the initial-boundary-value problem itself tends to $U(x, t)$ as $t \rightarrow+\infty$.
7. Consider the wave equation with a higher-order damping, namely,

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}-\gamma \frac{\partial^{3} u}{\partial x^{2} \partial t}=0 \quad \text { in } 0<x<1, \quad t>0
$$

along with the free-end boundary conditions: $\frac{\partial u}{\partial x}(0, t)=0=\frac{\partial u}{\partial x}(1, t)$. The damping coefficient, γ, is a positive constant.
(a) Define a quadratic functional, $E(u)$, that represents the energy associated with such waves, and show that any solution, $u(x, t)$, satisfies

$$
\frac{d E}{d t} \leq 0
$$

(b) Formulate the initial-value problem for this PDE together with its boundary conditions, and use the inequality proved in (a) to deduce the uniqueness of solutions.

