COMPLEX ANALYSIS BASIC EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2014

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems, and
- Master's level: 45 points with three questions essentially complete
- Ph. D. level: 55 points with four questions essentially complete
- Justify your reasoning!

1. Determine the Laurent series of $\frac{1}{(z-1)(z-2)}$ for the region $1<|z|<2$ and for the region $|z|>2$.
2. Let U be a connected open set, and let D be an open disk whose closure is contained in U. Let f be analytic on U and not constant. Assume that the absolute value $|f(z)|$ is constant on the boundary of D. Prove that f has at least one zero in D. Hint: Consider $g(z):=f(z)-f\left(z_{0}\right)$ with $z_{0} \in D$.
3. Evaluate the integrals $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}-2 x+2} d x$ and $\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}-2 x+2} d x$. Show the contour and prove all estimates you use.
4. Let $f(z)$ be an entire function. Suppose there exists a positive integer n such that $|\operatorname{Re}(f(z))| \leq|z|^{n}$ for all $z \in \mathbf{C}$. Show that $f(z)$ is a polynomial of degree at most n.
5. Show that the following series defines a meromorphic function on \mathbf{C} and determine the set of poles and their orders.

$$
\frac{1}{z}+\sum_{n \neq 0, n=-\infty}^{\infty}\left[\frac{1}{z-n}-\frac{1}{n}\right]
$$

6. Let $P(z)$ be a non-constant polynomial.
(a) Suppose that the roots of $P(z)$ all lie on the same side of a straight line L. Show that the roots of the derivative $P^{\prime}(z)$ also lie in the same infinite region.

Hint: Reduce to the case where L is the imaginary axis, and then use an explicit computation of the logarithmic derivative of $P(z)$ in this case.
(b) Deduce that if the roots of $P(z)$ all lie inside a circle C, then the roots of $P^{\prime}(z)$ also lie inside C.
7. Evaluate the integral $\int_{|z|=5} e^{e^{(1 / z)}} d z$.
8. (a) Give the precise statement of the Riemann Mapping Theorem (including uniqueness).
(b) Denote by $\mathbb{D}=\{|z|<1\}$ the open unit disk. Determine all conformal maps φ taking $\{z \in D: \operatorname{Re}(z)>0\}$ onto \mathbb{D} such that $\varphi(\sqrt{2}-1)=0$.
9. Let $f_{1}(z)$ be an analytic function on the open unit disk $\mathbb{D}=\{|z|<1\}$ such that $f_{1}(0)=0$ and $\left|f_{1}(z)\right|<1$ for all $z \in \mathbb{D}$. For every integer $n \geq 1$, define $f_{n+1}(z)=f_{n}\left(f_{1}(z)\right)$.

Suppose that the limit $g(z):=\lim _{n \rightarrow \infty} f_{n}(z)$ exists for every $z \in \mathbb{D}$. Show that either $g(z)$ is identically zero or $g(z)=z$ for every $z \in \mathbb{D}$.

Note: We are not assuming that $g(z)$ is analytic on \mathbb{D}.
10. Compute the integral

$$
\int_{0}^{\pi} \frac{d \theta}{3+2 \cos (\theta)}
$$

