DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST MASTER'S OPTION EXAM - APPLIED MATH August 2014

Do 5 of the following questions. Each question carries the same weight. Passing level is 60% and at least two questions substantially correct.

1. [20 points] A nonlinear oscillator with displacement $x \in R^{1}$ is governed by the differential equation:

$$
\frac{d^{2} x}{d t^{2}}+\frac{d V}{d x}=0, \quad \text { with potential } \quad V=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}
$$

(a) Reformulate this dynamical equation as a two-dimensional system of first-order equations. Determine the equilibrium points of the system.
(b) Analyze the stability of each equilibrium point and sketch the entire phase portrait.
(c) Find a function $H=H(x, \dot{x})$ on the phase plane that is constant on each solution trajectory.
2. [20 points] Consider the PDE: $u_{x}+\sin (x) u_{y}=0$.
(a) Find its general solution.
(b) Plot the characteristic curves.
(c) Find the solution that satisfies: $u(0, y)=e^{y}$.
3. [20 points] Solve the diffusion equation in 2 dimensions with Dirichlet boundary conditions in the boundaries of the square formed between the points $(0,0),(0,1),(1,0)$ and (1,1). Consider as initial condition $u(x, y, 0)=\phi(x, y)$ and give the answer in terms of a Fourier series whose coefficient you should evaluate.
4. [20 points] For the system

$$
\begin{aligned}
& \dot{x}=x y-1 \\
& \dot{y}=x-y^{3}
\end{aligned}
$$

(a) Identify all the fixed points.
(b) Classify the fixed points.
(c) Sketch the neighboring trajectories and try to fill in the rest of the phase portrait.
5. [20 points] For the dynamical system

$$
\dot{x}=r x-\sin (x)
$$

(a) Identify bifurcations that arise and classify their types.
(b) Find the critical points at which they occur.
(c) Construct a full bifurcation diagram of the fixed point solutions x^{\star} as a function of r.
6. [20 points] Consider the wave equation with a transverse elastic force

$$
\rho u_{t t}-T u_{x x}+k u=0, \quad-\infty<x<\infty, \quad t>0,
$$

with initial data

$$
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
$$

and assuming that u and its derivatives vanish at $\pm \infty$. Here ρ, T, and k are positive constants.
(a) Show that the total energy

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty} \rho u_{t}^{2}(x, t)+T u_{x}^{2}(x, t)+k u^{2}(x, t) d x
$$

is constant in time.
(b) (15 pts) Using (a), show that the solution to the initial value problem is unique.
7. [20 points] Consider the traffic flow equation

$$
\rho_{t}+[q(\rho)]_{x}=0, \quad-\infty<x<\infty, \quad t>0,
$$

where $\rho=\rho(x, t)$ is the vehicle density at spatial location x and at time t, while $q=q(\rho)=\rho v(\rho)$ is their flux. Furthermore, the average speed $v=v(\rho)$ is given by the constitutive relation

$$
v(\rho)=v_{m}\left(1-\frac{\rho}{\rho_{m}}\right)
$$

where v_{m} denotes the speed limit and ρ_{m} is the maximum density (bumper-to-bumper traffic).
(a) Solve the PDE with initial datum

$$
\rho(x, 0)=\left\{\begin{array}{l}
\rho_{m}, \quad x \leq 0 \\
0, \quad x>0
\end{array}\right.
$$

(b) Solve the PDE with initial datum

$$
\rho(x, 0)=\left\{\begin{array}{l}
\frac{1}{8} \rho_{m}, \quad x \leq 0 \\
\rho_{m}, \quad x>0
\end{array}\right.
$$

(c) Explain the practical meaning in traffic terms of the two different initial data and accordingly interpret the corresponding solutions in parts (a) and (b).

