# ADVANCED CALCULUS/LINEAR ALGEBRA BASIC EXAM 

DEPARTMENT OF MATHEMATICS AND STATISTICS<br>UNIVERSITY OF MASSACHUSETTS AMHERST<br>SEPTEMBER 2014

Complete 7 of the following 9 problems. Please show your work. The passing standards are:

- Master's level: $60 \%$ with three questions essentially complete (including one from each part);
- Ph.D. level: $75 \%$ with two questions from each part essentially correct.


## Linear Algebra

(1) Let $V_{1}, V_{2}$ be vector subspaces of $\mathbb{R}^{n}$. Prove that

$$
\operatorname{dim}\left(V_{1} \cap V_{2}\right) \geq \operatorname{dim} V_{1}+\operatorname{dim} V_{2}-n .
$$

(2) Let $V$ be the vector space of all $3 \times 3$ matrices with real entries, and consider the linear transformation $T: V \rightarrow V$ given by $T(X)=A X+X A$, where

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Compute the determinant $\operatorname{det} T$.
(3) Let $A$ be an $n \times n$ complex matrix. Prove that $A^{n}=0$ if and only if $I_{n}-t A$ is invertible for all nonzero $t \in \mathbb{C}$.
(4) Let $V$ be the subspace of $\mathbb{R}^{4}$ generated by the vectors

$$
v_{1}=(1,2,0,1), \quad v_{2}=(0,1,2,-1), \quad v_{3}=(2,0,1,-1) .
$$

Let $W$ be the subspace generated by

$$
w_{1}=(3,1,1,-1), \quad w_{2}=(0,2,2,1) .
$$

Find the dimension and a basis of $V \cap W$ and $V+W$.

## Advanced Calculus

(5) Let $S$ be the surface

$$
z=x^{2}+y^{2}, z \leq 1,
$$

oriented so that the normal vector has positive $z$-coordinate, and let $\mathbf{F}$ be the vector field $\left(y z,-x z+\sin (z), e^{x^{2}+y^{2}}\right)$. Compute the surface integral

$$
\int_{S} \mathbf{F} \cdot d \mathbf{A} .
$$

(6) Find, with proof, a real number $C$ so that

$$
\left|C-\int_{0}^{1} \frac{\sin x}{x} d x\right|<.01 .
$$

(7) Consider a vector field $\mathbb{F}$ on $\mathbb{R}^{3} \backslash\{0\}$ of the form

$$
\mathbf{F}=g(\|\mathbf{x}\|) \mathbf{x},
$$

where $g:(0, \infty) \rightarrow \mathbb{R}$ is a $C^{1}$ function. Show that for any closed curve $C$ in $\mathbb{R}^{3} \backslash\{0\}$, the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}
$$

vanishes.
(8) Let $\left\{f_{n}\right\}$ be a sequence of continuously differentiable functions on $[a, b]$, and suppose that $f_{n} \rightarrow f$ pointwise, and $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, b]$. Show that
(a) $f_{n} \rightarrow f$ uniformly, and
(b) $f$ is differentiable, and $f^{\prime}=g$.
(9) (a) Show that, if $\left\{a_{n}\right\}$ is a nonnegative decreasing sequence, the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if

$$
\sum_{n=1}^{\infty} 2^{n} a_{2^{n}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots
$$

converges.
(b) Use part (a) to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n(\log n)^{p}}
$$

converge if and only if $p>1$.

