UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics Advanced Exam - Probability and Mathematical Statistics Wednesday, January 15, 2014

Seventy points are required to pass. At least twenty-five must come from problems 1 and 2, and at least twenty five points must come from problems 3-5.

- 1. Multivariate Normal Distribution (25 points)
 - (a) Let X be normally distributed with mean μ_x and variance σ_x^2 , and let Y be normal with mean μ_y and variance σ_y^2 . Prove or disprove the following statement: the vector (X,Y) is multivariate normal.
 - (b) Suppose U|V=v is normal with mean $\mu_{u|v}$ and variance $\sigma_{u|v}^2$ and V is normal with mean μ_v and variance σ_v^2 . Is the joint distribution of U and V necessarily normal? Why or why not? Is the marginal distribution of U necessarily normal? Why or why not?
 - (c) If two random variables are independent, are they necessarily uncorrelated? Why or why not?
 - (d) If two random variables are uncorrelated, are they necessarily independent? Why or why not?
 - (e) Suppose $U \sim N(0,1)$, $V \sim N(0,1)$, and Cov(U,V) = 0. Are U and V necessarily independent? Why or why not?
- 2. Linear and Quadratic Forms (25 points) Let $Y \sim N_p(\mu, I)$. Let A and B be $k \times p$ matrices. Suppose that AB' = 0.
 - (a) Prove that AY and BY are independent.
 - (b) Prove that AB' = 0 implies that Y'AY and Y'BY are independent.
 - (c) Derive the expectation and variance of of Y'AY.
- 3. Exponential Family (15 points) Let $\beta = (\beta_1, \dots, \beta_k)'$ and T(x) be the vector $(T_1(x), \dots, T_k(x))'$. Let X_1, \dots, X_n be independent and identically distributed random variables whose probability distribution function is in the exponential family:

$$f(x,\beta) = \exp\left\{\beta' T(x) + b(\beta) + c(x)\right\}.$$

- (a) Give an example with k > 1 and show what $\beta, T(x), b(\beta)$, and c(x) are.
- (b) What is the score equation for β ? (k is not necessarily 1.)
- (c) For the k = 1 case, derive a simple expression for $E\{T(X_i)\}$.
- (d) For the k = 1 case, derive a simple expression for $Var\{T(X_i)\}$.

- (e) For the k = 1 case, what are the mean and variance of the score equation?
- 4. Probability Definitions (20 Points)
 - (a) Give a precise definition for convergence in distribution
 - (b) Give a precise definition for convergence in probability
 - (c) Give a precise definition for convergence almost surely
 - (d) Give examples of sequences of random variables that converge in distribution but not in probability
 - (e) Give examples of sequences of random variables that converge in probability but not almost surely
- 5. Law of Large Numbers (15 points) Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and let $X_i, i = 1, \ldots$, be a sequence of independent random variables mapping Ω to R. Suppose that $E(X_i) = 0$ and $E(X_i^4) < \infty$ for all i. Let $S_n = \sum_{i=1}^n X_i$. Prove that $n^{-1}S_n \to 1$ with probability 1.