Department of Mathematics and Statistics
 University of Massachusetts
 ADVANCED EXAM - DIFFERENTIAL EQUATIONS JANUARY 2014

Do five of the following seven problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. Consider the two-dimensional dynamical system:

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-\sinh x .
\end{aligned}
$$

(a) Discuss the linear stability of the equilibrium point $(x, y)=(0,0)$.
(b) Prove the nonlinear stability of $(0,0)$ by constructing a Lyapunov function.
(c) Is the origin asymptotically stable? Why or why not?
2. Suppose that two solutions, $u_{1}(x, t)$ and $u_{2}(x, t)$, of the wave equation in R^{1},

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}=f(x, t)
$$

satisfy

$$
u_{1}(x, 0)=u_{2}(x, 0), \quad \sup _{x}\left|\frac{\partial u_{1}}{\partial t}(x, 0)-\frac{\partial u_{2}}{\partial t}(x, 0)\right| \leq \epsilon
$$

for $\epsilon>0$.
(a) Prove that

$$
\sup _{x}\left|\frac{\partial u_{1}}{\partial t}(x, t)-\frac{\partial u_{2}}{\partial t}(x, t)\right| \leq \epsilon, \quad \text { for all } t>0
$$

(b) Provide an estimate in terms of ϵ and t for

$$
\sup _{x}\left|u_{1}(x, t)-u_{2}(x, t)\right|, \quad \text { for all } t>0
$$

3. The following third-order ODE arises in the boundary-layer theory of fluid mechanics:

$$
\frac{d^{3} u}{d x^{3}}+u \frac{d^{2} u}{d x^{2}}=0 \quad \text { in } \quad 0<x<+\infty
$$

Consider a solution $u(x)$ satisfying the conditions

$$
u(0)=0, \quad \frac{d u}{d x}(0)=0, \quad \frac{d^{2} u}{d x^{2}}(0)=1
$$

(a) Show that the second derivative, $\phi(x)=\partial^{2} u / d x^{2}$, of the solution $u(x)$ satisfies the integral equation

$$
\phi(x)=\exp \left(-\frac{1}{2} \int_{0}^{x}(x-y)^{2} \phi(y) d y\right) .
$$

HINT: express $u(x)$ as an integral involving ϕ.
(b) Using (a), give a proof that the solution $u(x)$ exists on the entire interval $0<x<+\infty$.
4. Consider the initial-boundary-value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\Delta u+\alpha u & & \text { in } \Omega \times[0, \infty) \\
u & =0 & & \text { on } \partial \Omega \times[0, \infty) \\
u & =u_{0} \in L^{2}(\Omega) & & \text { at } t=0
\end{aligned}
$$

Ω is a smooth bounded domain in R^{n}, and α is a positive constant.
(a) Suppose that $\alpha<\lambda_{1}(\Omega)$, the smallest eigenvalue of $-\triangle$ on Ω. Show that the $L^{2}(\Omega)$-norm of $u(x, t)$ decreases to zero: namely,

$$
\int_{\Omega} u(x, t)^{2} d x \rightarrow 0 \quad \text { as } t \rightarrow+\infty
$$

(b) Suppose now that instead $\lambda_{1}(\Omega)<\alpha<\lambda_{2}(\Omega)$, where $\lambda_{2}(\Omega)$ is the second eigenvalue. What is the behavior of the $L^{2}(\Omega)$-norm of $u(x, t)$ in that case?
5. Consider the system

$$
\dot{x}=-x+y g\left(\sqrt{x^{2}+y^{2}}\right), \quad \dot{y}=-y-x g\left(\sqrt{x^{2}+y^{2}}\right)
$$

where $g(r)=1 / \log r$ for $r>0$ and $g(0)=0$.
(a) Linearize around the equilibrium and show that the origin of the linearization is a stable node.
(b) Show directly that the origin is a stable focus for the nonlinear system.
(c) Why do (a) and (b) not yield a contradiction?
6. Consider harmonic functions, $u(x, y)$, in the infinite strip:

$$
\Omega=\left\{(x, y):-\infty<x<+\infty,-\frac{\pi}{2}<y<+\frac{\pi}{2}\right\} .
$$

(a) Construct explicitly a function $w(x, y)$ satisfying $\triangle w=0$ in Ω and $w=0$ on $\partial \Omega$, for which $w>0$ in Ω.
(b) Suppose that $u(x, y)$ is any smooth solution of $\triangle u=0$ in Ω with $u=0$ on $\partial \Omega$. Show that if

$$
\lim _{|x| \rightarrow \infty} \sup _{|y| \leq \pi / 2} e^{-|x|}|u(x, y)|=0
$$

then u must be identically zero in Ω.
HINT: Use a maximum principle argument on large rectangles that approach Ω, and compare u to small multiples of w.
7. Consider the linear system

$$
\dot{X}=A(t) X, \quad \text { where } \quad A(t)=\left(\begin{array}{cc}
1+\frac{\cos t}{2+\sin t} & 0 \\
1 & -1
\end{array}\right)
$$

(a) Write down a fundamental matrix solution $\Phi(t)$ for the system. HINT: The first equation decouples.
(b) Find a constant matrix B and periodic matrix $P(t)$ such that

$$
\Phi(t)=P(t) e^{t B}
$$

