VARIATIONS OF HODGE STRUCTURES - II

EDUARDO CATTANI

$X \rightarrow S$ a family of smooth complex manifolds (submersion, proper map).

0.1. Theorem (Ehresmann). f is a C^{∞} fibration.

Proof. Pick $s_{0} \in S$. Think about S as a small disk. Let $X_{s_{0}}$ is a fiber. Locally f is a projection. We can lift any vector field v from the base to the vector field \hat{v} on X. Can start the lift at any point of $X_{s_{0}}$. By compactness we can do it in the neihgborhood of s_{0}. So the flow of \hat{v} for $|s|<\delta$ gives the diffeomorphism $\phi_{v}: X_{s_{0}} \simeq X_{s}$ (that depends on the vector field v).

The lift depends on many choices. Let \hat{v}_{1}, \hat{v}_{2} be two lifts of the same vector field. Then $d f\left(\hat{v}_{1}-\hat{v}_{2}\right)=0$. This gives the map $T_{s_{0}}(S) \rightarrow C^{1}\left(X_{s_{0}}, T_{X_{s_{0}}}^{1}\right)$ (the connecting homomorphism in the relative tangent sequence) and the canonical KodairaSpencer map

$$
K_{v}: T_{s} S \rightarrow H^{1}\left(X_{s_{0}}, T_{X_{s_{0}}}^{1}\right)
$$

Another use of lifting these vector fields: given a curve $\gamma:[0,1] \rightarrow S, \gamma(0)=s_{0}$, we get a map $\phi^{*}: X_{s_{0}} \rightarrow X_{\gamma(1)}$ that depends on many choices. But in fact it is well-defined in cohomology:

$$
\left[\phi^{*}\right]^{-1}: H^{k}\left(X_{\gamma(1)}, \mathbb{Z}\right) \rightarrow H^{k}\left(X_{s_{0}}, \mathbb{Z}\right)
$$

It only depends on a homotopy class of γ, so gives a map

$$
\pi_{1}\left(S, s_{0}\right) \rightarrow \operatorname{End}_{\mathbb{Z}}\left(H^{k}\left(X_{s_{0}}, \mathbb{Z}\right)\right.
$$

(the monodromy representation).
This gives a locally constant sheaf of \mathbb{Z}-modules on Z. But a locally constant sheaf of \mathbb{C}-vector spaces is the same thing as a vector bundle with flat connection. The locally constant sheaf is $\mathcal{H}^{k}:=R^{k} f_{*} \mathbb{C}$, and the connection is the Gauss-Manin connection ∇.

If X_{s} is a smooth projective variety (or just a compact Kähler manifold), the cohomology carries a lot of structure. We want to transport these structures along the Gauss-Manin connection.
0.2. Theorem (Hodge decomposition).

$$
H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(X), \quad H^{p, q}=\overline{H^{q, p}}
$$

$H^{p, q}$ are elements of $H^{k}(X, \mathbb{C})$ that have a harmonic representative of bidegree (p, q) (harmonic relative to the Kähler metric, i.e. killed by the Laplacian).
$H^{p, q}$ is isomorphic to $H^{q}\left(X, \Omega^{p}\right)$ and also to $H_{\bar{\partial}}^{p, q}(X)$ (Dolbeaut complex). In particular, $X^{k, 0} \simeq H^{0}\left(X, \Omega^{k}\right)$. For example, if $\operatorname{dim} X=1$ then

$$
H^{1}(X, \mathbb{C})=H^{1,0} \oplus H^{0,1}
$$

and $H^{1,0}$ are "abelian differentials". The LHS is independent on the fiber but the decomposition on the RHS depends on the Kähler structure. Fix the basis $\omega_{1}, \ldots, \omega_{g}$ of $H^{1,0}$. Classically, fix the basis a_{i}, b_{j} in 1-homology $H_{1}(X, \mathbb{Z})$ and integrate ω_{i} 's. This gives a matrix of periods $\Lambda=\left[\int_{a_{i}} \omega_{j}, \int_{b_{k}} \omega_{j}\right]$.

Griffiths (68): do the same thing for any X.
Let $\omega \in H^{1,1} \cap H^{2}(\mathbb{R}), n=\operatorname{dim} X, k=n-l$. If $\alpha, \beta \in H^{k}(X, \mathbb{C})$, consider

$$
Q(\alpha, \beta)=(-1)^{k(k-1) / 2} \int_{X} \alpha \cup \beta \cup \omega^{l}
$$

Then morally $i^{p-q} Q(\alpha, \bar{\alpha})>0$ if $\alpha \in H^{p, q}$. (More precisely: α should also be in the primitive cohomology $\operatorname{Ker}\left(L_{\omega}^{l+1}\right)\left(L_{\omega}\right.$ is a left multiplication by ω). Primitive cohomology if flat if, for example, the Kähler structure on fibers X_{s} comes from the Kähler structure on the total space X).

We have a decomposition of vector bundles $\mathcal{H}^{k}=\oplus_{p+q=k} \mathcal{H}^{p, q}$ but only as C^{∞} vector bundles! E.g., take a 3 -fold. Then

$$
H^{3}=H^{3,0}(+) \oplus H^{2,1}(-) \oplus H^{1,2}(+) \oplus H^{0,3}(-),
$$

wjere \pm is the signature of the Hermitian form. $H^{3,0} \oplus H^{1,2}$ is the "Weil's intermediate Jacobian" but it is not a holomorphic bundle!

Griffiths realized that we should look not at the decomposition but at the filtration associated to this decomposition

$$
\mathcal{F}^{p}=\oplus_{a \geq p, a+b=k} \mathcal{H}^{a, b} .
$$

0.3. Theorem (Griffiths). \mathcal{F}^{p} are holomorphic subbundles.

We are looking for a classifying space for Hodge structures.
0.4. Definition. A Hodge structure is the following datum: $H=H_{\mathbb{Z}} \otimes \mathbb{C}$ (a fixed vector space), a form Q ("polarization"), k (the "weight"). A polarized HS of weight k is the decomposition $H=\oplus_{p+q=k} H^{p, q}, H^{p, q}=\overline{H^{q, p}}, Q$ has parity $(-1)^{k}$ such that $Q\left(H^{p, q}, H^{p^{\prime}, q^{\prime}}\right)=0$ if $q^{\prime} \neq p$ and $i^{p-q} Q(\alpha, \bar{\alpha})>0$ if $\alpha \in H^{p, q}$.

Now define $F^{p}=\oplus_{a \geq p} H^{a, b}$. Then

$$
\begin{equation*}
H=F^{p} \oplus \overline{F^{k-p+1}} \tag{1}
\end{equation*}
$$

And conversely, consider the flag $F^{k} \subset F^{k-1} \subset \ldots \subset F^{0}=H$. If (1) is satisfied then it is a Hodge structure with $H^{p, q}=F^{p} \cap \overline{F^{k-p}}$.

Define the (closed subset of) flag variety D^{\vee} of flags with $Q\left(F^{p}, F^{k-p+1}\right)=0$ and inside it the open subset D of polarized Hodge structures with numbers $h^{p, q}$.

Given a family $X \rightarrow S$, we have a map $S \rightarrow D /($ monodromy group) induced by the map that sends s to $\left[\phi^{*}\right]^{-1}\left(H^{p, q}\left(X_{s}\right)\right)$. This is the general period map.

Differential of the period map. What is the tangent space to the space of flags \mathcal{F} ? We have bundles $\mathcal{E}^{p} \rightarrow \mathcal{F}$ that to each flag associate F^{p}. Note: \mathcal{E}_{0} is a constant bundle H. Then $T \mathcal{F} \simeq \oplus_{p} \operatorname{Hom}\left(\mathcal{E}_{p}, \mathcal{E}_{0} / \mathcal{E}_{p}\right)$ "with some compatibility condition" (should be lower-triangular matrices).
0.5. Theorem (Griffiths' Transversality). In fact the image is in

$$
\oplus_{p} \operatorname{Hom}\left(H^{p, q}, H^{p-1, q+1}\right)
$$

How do you prove this? $H^{p, q}=H^{q}\left(X_{s}, \Omega^{p}\right)$. In fact the corresponding component of the direct sum is just a cup product with the Kodaira-Spencer class of v (a vector from $T_{s_{0}} S$).

