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§1. CATEGORIES AND FUNCTORS

§1.1. Categories. Most mathematical theories deal with situations when
there are some maps between objects. The set of objects is usually some-
what static (and so boring), and considering maps makes the theory more
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dynamic (and so more fun). Usually there are some natural restrictions on
what kind of maps should be considered: for example, it is rarely interest-
ing to consider any map from one group to another: usually we require this
map to be a homomorphism.

The notion of a category was introduced by Samuel Eilenberg and Saun-
ders MacLane to capture situations when we have both objects and maps
between objects (called morphisms). This notion is slightly abstract, but
extremely useful. Before we give a rigorous definition, here are some ex-
amples of categories:

EXAMPLE 1.1.1.
• The category Sets: objects are sets, morphisms are arbitrary func-

tions between sets.
• Groups: objects are groups, morphisms are homomorphisms.
• Ab: objects are Abelian groups, morphisms are homomorphisms.
• Rings: objects are rings, morphisms are homomorphisms of rings.

Often (for example in this course) we only consider commutative
rings with identity.
• Top: topological spaces, morphisms are continuous functions.
• Mflds: objects are smooth manifolds, morphisms are differentiable

maps between manifolds.
• Vectk: objects are k-vector spaces, morphisms are linear maps.

Notice that in all these examples we can take compositions of morphisms
and (even though we rarely think about this) composition of morphisms is
associative (because in all these examples morphisms are functions with
some restrictions, and composition of functions between sets is certainly
associative). The associativity of composition is a sacred cow of mathemat-
ics, and essentially the only axiom required to define a category:

DEFINITION 1.1.2. A category C consists of the following data:
• The set of objects Ob(C). Instead of writing “X is an object in C”,

we can write X ∈ Ob(C), or even X ∈ C.
• The set of morphisms Mor(C). Each morphism f is a morphism

from an object X ∈ C to an object Y ∈ C. More formally, Mor(C)
is a disjoint union of subsets Mor(X,Y ) over all X,Y ∈ C. It is

common to denote a morphism by an arrow X
f−→Y .

• There is a composition law for morphisms

Mor(X,Y )×Mor(Y,Z)→Mor(X,Z), (f, g) 7→ g ◦ f

which takes X
f−→Y and Y

g−→Z to the morphism X
g◦f−→Z.

• For each object X ∈ C, we have an identity morphism X
IdX−→X .

These data should satisfy the following basic axioms:
• The composition law is associative.

• The composition of any morphismX
f−→Y withX IdX−→X (resp. with

Y
IdY−→Y ) is equal to f .

Here is another example.
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EXAMPLE 1.1.3. Let G be a group. Then we can define a category C with
just one object (let’s denote it by O) and with

Mor(C) = Mor(O,O) = G.

The composition law is just the composition law in the group and the iden-
tity element IdO is just the identity element of G.

DEFINITION 1.1.4. A morphism X
f−→Y is called an isomorphism if there

exists a morphism Y
g−→X (called an inverse of f ) such that

f ◦ g = IdY and g ◦ f = IdX .

In the example above, every morphism is an isomorphism. Namely, an
inverse of any element of Mor(C) = G is its inverse in G.

A category where any morphism is an isomorphism is called a groupoid,
because any groupoid with one object can be obtained from a group G as
above. Indeed, axioms of the group (associativity, existence of a unit, exis-
tence of an inverse) easily translate into axioms of the groupoid (associativ-
ity of the composition, existence of an identity morphism, existence of an
inverse morphism).

Of course not any category with one object is a groupoid and not any
groupoid has one object.

EXAMPLE 1.1.5. Fix a field k and a positive integer n. We can define a cate-
gory C with just one object (let’s denote it by O) and with

Mor(C) = Matn,n .

The composition law is given by the multiplication of matrices. The iden-
tity element IdO is just the identity matrix. In this category, a morphism is
an isomorphism if and only if the corresponding matrix is invertible.

Here is an example of a category with a different flavor:

EXAMPLE 1.1.6. Recall that a partially ordered set, or a poset, is a set I with an
order relation �which is

• reflexive: i � i for any i ∈ I ,
• transitive: i � j and j � k implies i � k, and
• anti-symmetric: i � j and j � i implies i = j.

For example, we can take the usual order relation ≤ on real numbers, or
divisibility relation a|b on natural numbers (a|b if a divides b). Note that in
this last example not any pair of elements can be compared.

Interestingly, we can view any poset as a category C. Namely, Ob(C) =
I and for any i, j ∈ I , Mor(i, j) is an empty set if i 6� j and Mor(i, j) is
a set with one element if i � j. The composition of morphisms is defined
using transitivity of �: if Mor(i, j) and Mor(j, k) is non-empty then i � j
and j � k, in which case i � k by transitivity, and therefore Mor(i, k) is
non-empty. In this case Mor(i, j), Mor(j, k), and Mor(i, k) consist of one
element each, and the composition law Mor(i, j)×Mor(j, k)→Mor(i, k)
is defined in a unique way.

Notice also that, by reflexivity, i � i for any i, hence Mor(i, i) contains a
unique morphism: this will be our identity morphism Idi.
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Here is an interesting example of a poset: let X be a topological space.
Let I be the set of open subsets of X . This is a poset, where the order re-
lation is the inclusion of open subsets U ⊂ V . The corresponding category
can be denoted by Top(X).

§1.2. Functors. If we want to consider several categories at once, we need
a way to relate them! This is done using functors.

DEFINITION 1.2.1. A covariant (resp. contravariant) functor F from a cate-
gory C to a category D is a rule that, for each object X ∈ C, associates an

object F (X) ∈ D, and for each morphism X
f−→Y , associates a morphism

F (X)
F (f)−→F (Y ) (resp. F (Y )

F (f)−→F (X)). Two axioms have to be satisfied:
• F (IdX) = IdF (X) for any X ∈ C.

• F preserves composition: for any X
g−→Y and Y

f−→Z, we have
F (f ◦ g) = F (f)◦F (g) (if F is covariant) and F (f ◦ g) = F (g)◦F (f)
(if F is contravariant).

EXAMPLE 1.2.2. Let’s give some examples of functors.
• Inclusion of a subcategory, for example we have a functor

Ab→ Groups

that sends any Abelian groupG toG (considered simply as a group)

and that sends any homomorphism G
f−→H of Abelian groups to f

(considered as a homomorphism of groups).
• More generally, we have all sorts of forgetful covariant functors C →
D. This simply means that objects (and morphisms) of C are objects
(and morphisms) of D with some extra data and some restrictions
on this data. The forgetful functor simply ‘forgets’ about this extra
data. For example, there is a forgetful functor Vectk → Sets that
sends any vector space to the set of its vectors and that sends any
linear map to itself (as a function from vectors to vectors). Here we
‘forget’ that we can add vectors, multiply them by scalars, and that
linear maps are linear!
• Here is an interesting contravariant functor: the duality functor

Vectk → Vectk sends any vector space V to the vector space V ∗

of linear functions on V . A linear map L : V → U is sent to a con-
tragredient linear map L∗ : U∗ → V ∗ (which sends a linear function
f ∈ U∗ to a linear function v 7→ f(L(v)) in V ∗).
• A very important contravariant functor is a functor Top → Rings

that sends any topological space X to its ring of continuous func-

tions C0(X,R) and that sends any continuous map X
f−→Y to a

pull-back homomoprhism f∗ : C0(Y,R) → C0(X,R) (just compose a
function on Y with f to get a function on X).
• Here is an interesting variation: let’s fix a topological space X and

consider a functor Top(X) → Rings that sends any open subset
U ⊂ X to continuous functions C0(U,R) on U . For any inclusion
U ⊂ V of open sets, the pull-back homomorphism C0(V,R) →
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C0(U,R) is just restriction: we restrict a function on V to a function
on U . This functor Top(X)→ Rings is an example of a sheaf.

§1.3. Equivalence of Categories. It is tempting to consider a category of
all categories with functors as morphisms! Indeed, we can certainly define

a composition of two functors C F−→D and D
G−→E in an obvious way,

and we have obvious identity functors C IdC−→C that do not change either
objects or morphisms. There are some slight set-theoretic issues with this
super-duper category, but we are going to ignore them.

However, one interesting issue here is when should we consider two cat-
egoriesC andD as equivalent? An obvious approach is to say thatC andD

are isomorphic categories if there exist functors C F−→D and D
G−→C that

are inverses of each other. However, this definition is in fact too restrictive.
Here is a typical example why:

EXAMPLE 1.3.1. Let D be a category of finite-dimensional k-vector spaces
and let C be its subcategory that has one object for each dimension n,
namely the standard vector space kn of column vectors.

Notice that Mor(kn, km) can be identified with matrices Matm,n in the
usual way of linear algebra. The categories C and D are not isomorphic,
because D contains all sorts of vector spaces in each dimension, and C con-
tains just one kn. However, the main point of linear algebra is that C is
somehow enough to do any calculation, because any n-dimensional vector
space V is isomorphic to kn “after we choose a basis in V ”.

Should we consider C and D as equivalent categories? To formalize this,
we give the following definition:

DEFINITION 1.3.2. A covariant functor C F−→D is called an equivalence of
categories if

• F is essentially surjective, i.e. any object in D is isomorphic (but not
necessarily equal!) to an object of the form F (X) for some X ∈ C.
• F is fully faithful, i.e.

MorC(X,Y ) = MorD(F (X), F (Y ))

for any objects X,Y ∈ C.

For example, let’s return to “linear-algebra” categories above. We have
an obvious inclusion functor F : C → D. We claim that F is an equivalence
of categories. To show that F is essentially surjective, take V ∈ D, i.e. V
is an n-dimensional vector space. Then V is isomorphic to kn, indeed any
choice of a basis e1, . . . , en ∈ V gives an isomorphism V → kn which sends
v ∈ V to the column vector of its coordinates in the basis {ei}. (an act
of choice stipulates that we allow the axiom of choice, but let’s not worry
about such things). This shows that F is essentially surjective. Notice that
F is fully faithful by definition: linear maps from kn to km are the same in
categories C and D. So F is an equivalence of categories.

Our definition has a serious flaw: it is not clear that equivalence of cat-
egories is an equivalence relation! We postpone the general statement to
exercises, and here just look at our example: is there an equivalence of
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categories from D to C? We need a functor G from D to C. For any n-
dimensional vector space V , there is only one candidate for G(V ): it must
be kn. Are we done? No, because we also have to define G(L) for any lin-
ear map L : V → U . So essentially, we need a matrix of L. This shows
that there is no canonical choice for G: unlike F , G is not unique. How-
ever, we can do the following: let’s choose a basis in each vector space V .
In other words, let’s choose a linear isomorphism IV : V → kn for each
n-dimensional vector space V . Then we can define G(L) : kn → km as the
composition

kn
I−1
V−→V

G−→U
IU−→ km.

In more down-to-earth terms, G(L) is a matrix of L in coordinates associ-
ated to our choice of bases in V and in U . Then it is immediate that G is
essentially surjective (in fact just surjective) and it is easy to see that G is
fully faithful: linear maps from V to U are identified with linear maps from
kn to km.

§1.4. Representable Functors. Fix an object X ∈ C. A very general and
useful idea is to study X by poking it with other objects of C or by poking
other objects by X . This is formalized as follows:

DEFINITION 1.4.1. A contravariant functor represented by X is a functor

hX : C → Sets

that sends any Y ∈ C to the set of morphisms Mor(Y,X) and that sends

any morphism Y1
f−→Y2 the function Mor(Y2, X)→Mor(Y1, X) obtained

by taking composition with f .
Similarly, a covariant functor represented by X is a functor

h′X : C → Sets

that sends any Y ∈ C to the set of morphisms from X to Y and that sends

any morphism Y1
f−→Y2 the function Mor(X,Y1) →Mor(X,Y2) obtained

by taking composition with f .

An interesting game is to start with a functor and try to guess if it’s rep-
resented or not. For example, let’s consider a forgetful covariant functor

Ab→ Sets

that sends any Abelian group to the set of its elements. Is it representable?
We have to decide if there exists an Abelian group X such that morphisms
from X to Y are in bijective correspondence with elements of Y . We claim
that X = Z works. Indeed, a morphism from Z to an Abelian group Y is
uniquely determined by the image of 1 ∈ Z. And for any element of Y , we
can define a homomorphism Z → Y that sends 1 to this element! So, quite
remarkably, hZ is nothing but the forgetful functor Ab→ Sets.

See exercises and Section §2.3 for further discussion and examples.
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§1.5. Products and Coproducts. In some categories, such as Sets or Vectk,
there is a natural notion of a product, for example if X and Y are two sets
then X×Y is their Cartesian product. What could a definition of a product
look like in other categories? If objects of our category are sets with some
extra structure then we can try to define the product of two objects as their
set-theoretic product endowed with this extra structure. For example, the
product of two vector spaces U and V as a set is just the Cartesian product.
Extra structures here are addition of vectors and multiplication of scalars:
those are defined component-wise. But this approach clearly depends on
the specific nature of the category at hand. And more importantly, it does
not always work even in some very basic examples (such as fibered prod-
ucts of manifolds). Quite remarkably, there is another approach to products
that does not use specifics of the category. Instead, it is based on the anal-
ysis of what the morphism from (or to) the product should look like. One
can use the language of representable functors for this, but it will be easier
to give an ad hoc definition.

DEFINITION 1.5.1. Let X and Y be objects of a category C. Their product
(if it exists) is an object Z of C and two morphisms, πX : Z → X and πY :
Z → Y (called projections) such that the following “universal property” is
satisfied. If W is another object of C endowed with morphisms a : W → X
and b : W → Y then there exists a unique morphism f : W → Z such that
a = πX ◦ f and b = πY ◦ f .

For example, suppose thatX and Y are sets. Then we can take the Carte-
sian product X × Y as Z. The projections are just the usual projections:
πX(x, y) = x and πY (x, y) = y. If we have functions a : W → X and
b : W → Y then there is only one choice for a function f : W → X → Y ,
namely f(w) = (a(w), b(w)). So X × Y is indeed a product of X and Y
according to the definition above.

A little tinkering with this definition gives coproducts:

DEFINITION 1.5.2. Let X and Y be objects of a category C. Their coproduct
(if it exists) is an object Z of C and two morphisms, iX : X → Z and πY :
Y → Z such that the following “universal property” is satisfied. If W is
another object of C endowed with morphisms a : X → W and b : Y → W
then there exists a unique morphism f : Z → W such that a = f ◦ iX and
b = f ◦ iY .

EXAMPLE 1.5.3. What is a coproduct of two sets? We claim that it is nothing
but their disjoint union X t Y with two inclusions iX : X → X t Y and
iY : Y → X t Y . If we have maps a : X → W and b : Y → W then it is
easy to define f : X t Y →W : if x ∈ X then f(x) = a(x) and if y ∈ Y then
f(y) = b(y).

EXAMPLE 1.5.4. What is a coproduct of two vector spaces, U and V ? Taking
the disjoint union of U and V is not a vector space in any reasonable way, so
this is not the right way to go. It is quite remarkable that a coproduct exists,
and is in fact equal to the product U×V . The maps iU and iV are defined as
follows: iU (u) = (u, 0) and iV (v) = (0, v). If we have maps a : U →W and
b : V →W then f : U×V →W is defined as follows: f(u, v) = a(u)+b(v).
It is quite easy to check that this is indeed a coproduct.
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The difference between the product and coproduct of vector spaces be-
comes more transparent if we try to multiply more than two vector spaces.
In fact, the product of any collection {Vi}i∈I of vector spaces is simply their
Cartesian product (with a component-wise addition) but for a coproduct
we have to make some changes, otherwise in the definition of the map f
as in the previous Example we would have to allow infinite sums, which is
not possible. In fact, the right definition of a coproduct is to take a direct
sum

⊕
i∈I Vi. By definition, this is a subset of the direct product

∏
i∈I Vi that

parametrizes all collections (vi)i∈I of vectors such that all but finitely many
of vi’s are equal to 0. Then we can define the map f exactly as in the previ-
ous Example: if we have maps ai : Vi →W for any i then f :

⊕
i∈I Vi →W

takes (vi)i∈I to
∑

i ai(vi).

§1.6. Natural Transformations. As Saunders Maclane famously said: ”I
did not invent category theory to talk about functors. I invented it to talk
about natural transformations.” So what is a natural transformation? It
is a map form one functor to another! Let me start with an example that
explains why we might need such a thing.

Recall that for any vector space V , we have a “natural” linear map

αV : V → V ∗∗

(in fact an isomorphism if dimV < ∞) that sends a vector v ∈ V to the
linear functional f 7→ f(v) on V ∗. How is this map “natural”?

One explanation is that αV does not depend on any choices. After all, if
dimV < ∞ then V and V ∗ are isomorphic as well but there is no special
choice for this isomorphism unless we fix a basis of V . But this explanation
is still “linguistic”, the question is, can we define naturality mathematically?

To get to the answer, let’s study the effect of αV on morphisms (this is a
general recipe of category theory, look not just at objects but also at mor-

phisms). Let U L−→V be a linear map. We also have our “natural” linear
maps αU : U → U∗∗ and αV : V → V ∗∗. Finally, by taking a contragredi-

ent linear map twice, we have a contragredient linear map U∗∗ L
∗∗
−→V ∗∗. To

summarize things, we have a square of linear maps:

U
αU
> U∗∗

V

L
∨

αV
> V ∗∗

L∗∗
∨

(1)

Apriori, there is no reason for this diagram to be commutative: if αU were a
random linear map, this diagram obviously won’t be commutative. How-
ever, it is easy to see that this diagram is commutative. Let’s show it by
chasing the diagram. Pick u ∈ U . Then we claim that

αV (L(u)) = L∗∗(αU (u)).

Both sides of this equation are elements of V ∗∗, i.e. linear functionals on V ∗.
The functional on the LHS takes f ∈ V ∗ to f(L(u)). The functional on the
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RHS takes f ∈ V ∗ to

αU (u)(L∗(f)) = L∗(f)(u) = f(L(u)).

This calculation might look confusing, but I don’t think there is any way
to make it more palatable, my only suggestion is to redo this calculation
yourself!

Now let’s give a general definition.

DEFINITION 1.6.1. Let F,G : C1 → C2 be two covariant functors. A natu-
ral transformation α : F → G between them is a rule that, for each object
X ∈ C1, assigns a morphism F (X) αX−→G(X) in C2 such that the follow-

ing condition is satisfied. For any morphism X1
f−→X2 in C1, we have a

commutative diagram

F (X1)
αX1> G(X1)

F (X2)

F (f)
∨

αX2

> G(X2)

G(f)
∨

(2)

If αX is an isomorphism for any X then α is called a natural isomorphism.

How is this related to the linear algebra example above? Let Vectk be the
category of vector spaces over k. Consider two functors: the identity func-
tor Id : Vectk → Vectk and the “double duality” functor D : Vectk →
Vectk that sends any vector space V to V ∗∗ and any linear map L : U → V
to a double contragredient linear map L∗∗ : U∗∗ → V ∗∗.

We claim that there is a natural transformation from Id to D (and in fact
a natural isomorphism if we restrict to a subcategory of finite-dimensinal
vector spaces). All we need is a rule αV for each vector space: it should be
a morphism, i.e. a linear map, from Id(V ) = V to D(V ) = V ∗∗ such that
(2) is satisfied for any morphism U → V . This is exactly the linear map we
have constructed above, and (1) is a commutative square we need.

See exercises and Section §2.3 for further discussion and examples.

§1.7. Exercises.
1. Let C be a category. (a) Prove that an identity morphism A → A is
unique for each object A ∈ Ob(C). (b) Prove that each isomorphism in C
has a unique inverse.
2. Let C be a category. An object X of C is called an initial object (resp. a
terminal object) if, for every object Y of C, there exists a unique morphism
X → Y (resp. a unique morphism Y → X). (a) Decide if the following
categories contain initial objects, and if so, describe them: the category of
vector spaces, the category of groups, the category of commutative rings
(with 1). (b) Prove that a terminal object (if exists) is unique up to a canon-
ical isomorphism (and what exactly does it mean?).
3. Let (I,≤) be a poset (partially ordered set) and let CI be the correspond-
ing category. Unwind definitions (i.e. give definitions in terms of the poset,
without using any categorical language) of (a) terminal and initial objects
in CI (if they exist); (b) product and coproduct in CI (if they exist).
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4. Let X be a fixed object of a category C. We define a new category C/X
of objects of C over X as follows: an object of C/X is an object Y of C along
with some morphism Y → X . In other words, an object of C/X is an arrow
Y → X . A morphism from Y → X to Y ′ → X is a morphism from Y to Y ′

that makes an obvious triangle commutative. Prove that C/X is indeed a
category and that 1X : X → X is its terminal object.

5. In the notation of Problem 3, let CI be the category associated with a
poset I and let Ab be the category of Abelian groups. A contravariant
functor CI → Ab is called an inverse system of Abelian groups indexed
by a partially ordered set I . (a) Reformulate this definition without using
categorical language. (b) Consider Abelian groups Z/2nZ for n = 1, 2, . . .
and natural homomorphisms Z/2nZ → Z/2mZ for n ≥ m. Show that this
is an inverse system. (c) Let C be an arbitrary category. Give a definition of
an inverse system of objects in C indexed by a poset I . Show that (b) is an
inverse system of rings.

6. In the notation of Problem 4, fix some inverse system F : CI → Ab.
Also, let’s fix an Abelian group A and consider an inverse system FA :
CI → Ab defined as follows: FA(i) = A for any i ∈ I and if i ≤ j then
the corresponding morphism A → A is the identity. (a) Prove that FA is
indeed an inverse system. (b) Show that the rule A → FA can be extended
to a functor from the category Ab to the category of inverse systems CI →
Ab (with natural transformations as morphisms). (c) Unwind definitions
to describe what it means to have a natural transformation from FA to F
without categorical language.

7. In the notation of Problem 6, an Abelian group A is called an inverse limit
of an inverse system F : CI → Ab if for any Abelian group B, and for
any natural transformation FB → F , there exists a unique homomorphism
B → A such that FB factors through FA. (a) Unwind definitions to describe
the inverse limit without categorical language. (b) Show that the inverse
system of rings in Problem 5(b) has an inverse limit (called the ring of 2-
adic numbers).

8. Let F : Sets → Sets be a contravariant functor that sends any set S
to the set of subsets of S and any function f : S → S′ to a function that
sends U ⊂ S′ to f−1(U) ⊂ S. (a) Show that F is representable by a two-
element set {0, 1}. (b) Describe a contravariant functor representable by a
three-element set {0, 1, 2}.

9. Let V be a real vector space. Prove that its complexification VC repre-
sents the covariant functor F : VectC → Sets. Namely, for any complex
vector space U , F (U) is the set of R-linear maps V → UR (where UR is U
considered as a real vector space).

10. Let C and D be categories and let F : C → D and G : D → C be
functors. Then F is called a left adjoint of G (and G is called a right adjoint
of F ) if, for each pair of objects X ∈ C and Y ∈ D, there exist bijections of
sets

τX,Y : MorD(F (X), Y )→MorC(X,G(Y ))
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that are natural transformations in X for fixed Y and in Y for fixed X . (a)
Explain what this last condition means explicitly. (b) Show that complex-
ification VectR → VectC and restriction of scalars VectC → VectR are
adjoint functors.
11. Let G : Vectk → Sets be a forgetful functor. Describe its left-adjoint.
12. LetC be a category and letX,Y ∈ Ob(C). Consider representable func-
torsC → Sets given byX and Y , i.e. hX = Mor(·, X) and hY = Mor(·, Y ).
Show that there is a natural bijection between morphisms X → Y and nat-
ural transformations hX → hY . More precisely, let D be a category of func-
tors C → Sets (with natural transformations as morphisms). Show that the
rule X → hX extends to a fully-faithful functor C → D.
13. Show that equivalence of categories is an equivalence relation on cat-
egories, i.e. if C and D are equivalent then D and C are also equivalent,
and that if C and D (resp. D and E) are equivalent then C and E are also
equivalent. This relations is obviously reflexive: any category is equivalent
to itself by means of the identity functor IdC : C → C.
14. Give example of a category where (a) products do not always exist; (b)
products exist but coproducts do not always exist.

§2. TENSOR PRODUCTS

§2.1. Tensor Product of Vector Spaces. Let’s define tensor products in the
category of vector spaces over a field k. Fix two vector spaces, U and V .
We want to understand all bilinear maps

U × V β−→W,

where W can be any vector space. For example, if W = k, then β is just a
bilinear function. We are not going to fix W , instead we allow it to vary.

Notice that if U × V → W̃ is a bilinear map, and W̃ → W is a linear
map, then the composition U × V → W̃ → W is again bilinear. So we can
ask if there exists the “biggest” bilinear map U × V → W̃ such that any
other bilinear map U × V → W factors through some linear map W̃ → W .
It turns out that this universal W̃ exists. It is known as a tensor product.

DEFINITION 2.1.1. A vector space U ⊗k V , and a bilinear map

U × V α−→U ⊗k V

is called a tensor product if, for any bilinear map U × V β−→W , there exists

a unique linear map U ⊗k V
B−→W (called a linear extension of β) such that

the following diagram commutes:

U × V
β

> W

U ⊗k V

B
>

α

>
(3)

THEOREM 2.1.2. The tensor product exists and is unique (up to isomorphism).
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We will prove this theorem later, when we discuss more general tensor
products of R-modules. But first let’s analyze how U ⊗k V looks like.

DEFINITION 2.1.3. For any pair (u, v) ∈ U × V , its image α(u, v) ∈ U ⊗k V
is called a pure tensor or an indecomposable tensor, and it is denoted by u⊗ v.

LEMMA 2.1.4. U⊗k V is spanned by pure tensors (but be careful, not any element
of U ⊗k V is a pure tensor!) We have bilinear relations between pure tensors:

(au1 + bu2)⊗ v = a(u1 ⊗ v) + b(u2 ⊗ v), (4)

u⊗ (av1 + bv2) = a(u⊗ v1) + b(u⊗ v2). (5)

If {ei} is a basis of U and {fj} is a basis of V then {ei ⊗ fj} is a basis of U ⊗k V .
In particular,

dim(U ⊗k V ) = (dimU) · (dimV )

(assuming U and V are finite-dimensional).

Proof. We are going to define various interesting bilinear maps and analyze
the universal property (3). For example, let’s take a bilinear map β = α:

U × V
α

> U ⊗k V

U ⊗k V

B >α

>

Commutativity of the diagram simply means that

B(u⊗ v) = α(u, v) = u⊗ v

for any pair (u, v). So we see that the restriction of B to the linear span
of pure tensors must be the identity map. Suppose that pure tensors don’t
span the whole U⊗kV . Then there are many ways to extend a linear mapB
from the linear span of pure tensors to the whole U ⊗k V . In particular, B
is not unique, which contradicts the universal property.

The fact that pure tensors satisfy bilinear relations simply follows from
the fact that α is a bilinear map. For example,

α(au1 + bu2, v) = aα(u1, v) + bα(u2, v),

which by definition implies

(au1 + bu2)⊗ v = a(u1 ⊗ v) + b(u2 ⊗ v).

It follows from bilinearity that if u =
∑
xiei and v =

∑
yjfj then

u⊗ v =
∑

xiyj(ei ⊗ fj).

Since U ⊗k V is spanned by pure tensors, we see that in fact U ⊗k V is
spanned by vectors ei ⊗ fj . To show that these vectors form a basis, it
remains to show that they are linearly independent.

Suppose that some linear combination is trivial:∑
aijei ⊗ fj = 0. (6)
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How to show that each aij = 0? Let’s fix two indices, i0 and j0, and consider

a bilinear function U × V β−→ k defined as follows:

β
(∑

xiei,
∑

yjfj

)
= xi0yj0 .

Then β(ei0 , fj0) = 1 and β(ei, fj) = 0 for any other pair of basis vectors.
Now we compute its linear extension applied to our linear combination:

B
(∑

aijei ⊗ fj
)

=
∑

aijB(ei ⊗ fj) = ai0j0 .

On the other hand,

B
(∑

aijei ⊗ fj
)

= B(0) = 0.

So all coefficients aij in (6) must vanish. �

§2.2. Tensor Product of R-modules. We will extend the notion of tensor
products to the category ModR of R-modules, where R is a commutative
ring with 1. To stress analogy with vector spaces, instead of saying “ho-
momorphism of R-modules”, we will say “R-linear map of R-modules”.
We fix two R-modules, M and N and study R-bilinear maps M ×N → K,
where K is an arbitrary R-module. The definition and the main theorem
are the same:

DEFINITION 2.2.1. AnR-moduleM⊗RN endowed with anR-bilinear map

M ×N α−→M ⊗R N

is called a tensor product if, for anyR-bilinear mapM×N β−→K, there exists

a unique R-linear map M ⊗R N
B−→K (called a linear extension of β) such

that the following diagram commutes:

M ×N
β

> K

M ⊗R N

B
>

α

>
(7)

THEOREM 2.2.2. The tensor product exists.

Proof. We are just going to define M ⊗R N as an R-module generated by
pure tensors u⊗ v modulo bilinear relations (4) and (5). But to avoid nota-
tional chaos, let’s proceed a bit more formally. Let W be a free R-module
with one basis vector [m,n] for each pair of elements m ∈M , n ∈ N . There
are many pairs, so this is a really huge R-odule! Let W0 ⊂W be a submod-
ule spanned by all expressions

[au1 + bu2, v]− a[u1, v]− b[u2, v]

and
[u, av1 + bv2]− a[u, v1]− b[u, v2].

We define
M ⊗R N := W/W0

(quotient R-module). We define pure tensors u⊗ v as cosets of [u, v]:

u⊗ v := [u, v] +W0.
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Then we have

(au1 + bu2)⊗ v = a(u1 ⊗ v) + b(u2 ⊗ v)

and
u⊗ (av1 + bv2) = a(u⊗ v1) + b(u⊗ v2).

We define a map

M ×N α−→M ⊗R N, α(u, v) = u⊗ v.
Equations above show that α is bilinear.

Why does α satisfy the universal property (7)? Given a bilinear map

M ×N β−→K, we can define an R-linear map W
f−→K by a simple rule

f([u, v]) = β(u, v)

(notice that an R-linear map from a free R-module can be defined, and is
uniquely determined, by its values on the basis). We claim thatW0 ⊂ Ker f .
It is enough to check that f kills generators of f . And indeed, we have

f
(
[au1+bu2, v]−a[u1, v]−b[u2, v]

)
= β(au1+bu2, v)−aβ(u1, v)−β(u2, v) = 0

and

f
(
[u, av1+bv2]−a[u, v1]−b[u, v2]

)
= β(u, av1+bv2)−aβ(u, v1)−bβ(u, v2) = 0

by bilinearity of β. It follows that f defines an R-linear map W/W0
B−→K:

W
f

> K

W/W0

B
>

>

This map is our bilinear extension B : M ⊗R N → K.
Finally, notice that we have no choice but to define

B(u⊗ v) = β(u, v)

if we want the diagram (7) to be commutative. So B is unique and M ⊗RN
indeed satisfies the universal property of the tensor product. �

We can generalize Lemma 2.1.4:

LEMMA 2.2.3. M ⊗R N is spanned by pure tensors. If M is a free R-module
with basis {ei} and N is a free R-module with basis {fj} then M ⊗ N is a free
R-module with basis {ei ⊗ fj}.

Proof. The proof is identical to the proof of Lemma 2.1.4. �

EXAMPLE 2.2.4. Tensor products of non-free R-modules are much more in-
teresting. For example, suppose that R = Z, i.e. we are computing tensor
products of Abelian groups. What is Z2 ⊗Z Z3? Consider a pure tensor
a⊗ b ∈ Z2 ⊗Z Z3. Since a = 3a in Z2, we have

a⊗ b = (3a)⊗ b = 3(a⊗ b) = a⊗ (3b) = a⊗ 0 = 0.

Since Z2 ⊗Z Z3 is spanned by pure tensors, we have

Z2 ⊗Z Z3 = 0.
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Next we discuss uniqueness of tensor products.

THEOREM 2.2.5. Tensor product M ⊗R N is unique up to a canonical isomor-
phism.

Proof. Suppose that we have two R-modules, let’s call them M ⊗R N and

M⊗′RN , and two bilinear maps,M×N α−→M⊗RN andM×N α′−→M⊗′RN
that both of them satisfy the universal property. From the diagram

M ×N
α′

> M ⊗′R N

M ⊗R N

α

>
(8)

we deduce existence of unique linear maps

M ⊗R N
B−→M ⊗′R N and M ⊗′R N

B′−→M ⊗R N
that make (8) commutative. We claim that B is an isomorphism and B′ is
its inverse. Indeed, B′ ◦B makes the following diagram commutative:

M ×N
α

> M ⊗R N

M ⊗R N
B′ ◦B

>α

>

But the identity map onM⊗RN also makes it commutative. By uniqueness
of the linear extension, we see that B′ ◦B = Id |M⊗RN . A similar argument
shows that B ◦B′ = Id |M⊗′RN . �

This argument shows that if we have two R-modules that satisfy the
universal property of the tensor product, then they are not only isomorphic,
but in fact there is a canonical choice for this isomorphism (given by maps
B and B′ of the proof). That’s why we say that the tensor product M ⊗RN
is unique up to a canonical isomorphism. The argument used in the proof
above is very general. It can be easily generalized if we recast it in the
categorical language. This is done in the next section.

§2.3. Categorical aspects of tensors: Yoneda’s Lemma.

DEFINITION 2.3.1. Fix R-modules M and N and define a covariant functor

BilMapsM,N : ModR → Sets

that sends any R-module K to the set of bilinear maps

{β |M ×N β−→K}

and that sends any R-linear map K
f−→K ′ to the function

{β |M ×N β−→K} → {β′ |M ×N β′−→K ′}

that assigns to a bilinear function M ×N β−→K with values in K a bilinear

function M ×N β−→K
f−→K ′ with values in K ′.
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The R-module M ⊗R N , as any other R-module, defines a covariant rep-
resentable functor

hM⊗RN : ModR → Sets

that sends an R-module K to the set of R-linear maps

{B |M ⊗R N
B−→K}

and that sends an R-linear map K
f−→K ′ to the function

{B |M ⊗R N
B−→K} → {B′ |M ⊗R N

B′−→K ′}

that assigns to an R-linear function M ⊗R N
B−→K with values in K an

R-function M ⊗R N
B−→K

f−→K ′ with values in K ′.
Now of course the whole point of introducing the tensor product is to

identify the set of bilinear maps M × N → K with the set of linear maps
M ⊗R N → K. How exactly is this done? Recall that we also have a
“universal” bilinear map

M ×N α−→M ⊗R N.

For any linear map M ⊗R N
B−→K, B ◦ α is a bilinear map M × N −→K.

And vice versa, for any bilinear map M × N β−→K, there exists a unique

linear map M ⊗R N
B−→K such that B ◦ α = β.

In other words, for any R-module K, we have a bijection of sets

hM⊗RN (K) αK−→BilMapsM,N (K)

where αK simply composes a linear map M ⊗R N → K with α.

LEMMA 2.3.2. This gives a natural isomorphism of functors

α : hM⊗RN → BilMapsM,N .

Proof. Natural transformations and natural isomorphisms are defined in
Section §1.6. We need a rule that for each R-module K gives a bijection αK
of sets (recall that isomorphisms in the category of sets are called bijections)

hM⊗RN (K)→ BilMapsM,N (K)

from the set of linear maps M ⊗R N → K to the set of bilinear maps M ×
N → K. We have already defined this bijection, this is just a bijection given
by taking composition with a universal bilinear map M ×N →M ⊗R N .

It remains to check that the square (2) is commutative. Take an R-linear

map K1
f−→K2. We have to check that the following square is commuta-

tive:

hM⊗RN (K1)
αK1> BilMapsM,N (K1)

hM⊗RN (K2)

hM⊗RN (f)
∨

αK2

> BilMapsM,N (K2)

BilMapsM,N (f)
∨
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Let’s chase the diagram. Take an element of hM⊗RN (K1), i.e. an R-linear
map

M ⊗R N
B−→K1.

The horizontal arrow αK1 takes it to the bilinear map

M ×N α−→M ⊗R N
B−→K1

and then the vertical map BilMapsM,N (f) takes it to the bilinear map

M ×N α−→M ⊗R N
B−→K1

f−→K2.

On the other hand, if we apply the vertical arrow hM⊗RN (f) first, we will
get a linear map

M ⊗R N
B−→K1

f−→K2

and applying αK2 gives a bilinear map

M ×N α−→M ⊗R N
B−→K1

f−→K2,

the same as above. So the square commutes. �

If we can define a tensor product of M and N in two different ways,
say M ⊗R N and M ⊗′R N , the representable functors hM⊗RN and hM⊗′RN
are going to be naturally isomorphic (because both of them are naturally
isomorphic to BilMapsM,N ). So to reprove Theorem 2.2.5, we can use the
following weak version of Yoneda’s lemma:

LEMMA 2.3.3. Let X,Y be two objects in a category C. Suppose we have a nat-
ural isomorphism of representable functors α : hX → hY . Then X and Y are
canonically isomorphic.

Proof. To match our discussion of the tensor product, we will prove a co-
variant version, the contravariant version has a similar proof. Recall that
hX sends any object Z to the set Mor(X,Z) and it sends any morphism
Z1 → Z2 to the function Mor(X,Z1) → Mor(X,Z2) obtained by taking a
composition with Z1 → Z2.

So α gives, for any object Z in C, a bijection

αZ : Mor(X,Z)→Mor(Y, Z)

such that for each morphism Z1 → Z2 we have a commutative diagram

Mor(X,Z1)
αZ1> Mor(Y, Z1)

Mor(X,Z2)
∨

αZ2

> Mor(Y, Z2)
∨

where the vertical arrows are obtained by composing with Z1 → Z2.
In particular, we have bijections

Mor(X,X) αX−→Mor(Y,X) and Mor(X,Y ) αY−→Mor(Y, Y ).

We define morphisms

f = αX(IdX) ∈Mor(Y,X) and g = α−1
Y (IdY ) ∈Mor(X,Y ).
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We claim that f and g are inverses of each other, and in particular X and Y
are canonically isomorphic (by f and g). Indeed, consider the commutative
square above when Z1 = X , Z2 = Y , and the morphism from X to Y is g.
It gives

Mor(X,X)
αX
> Mor(Y,X)

Mor(X,Y )

g ◦ ·
∨

αY
> Mor(Y, Y )

g ◦ ·
∨

Let’s take IdX ∈ Mor(X,X) and compute its image in Mor(Y, Y ) in two
different ways. If we go horizontally, we first getαX(IdX) = f ∈Mor(Y,X).
Then we take its composition with X

g−→Y to get g ◦ f ∈Mor(Y, Y ). If we
go vertically first, we get g ∈ Mor(X,Y ). Then we get αY (g) = IdY , be-
cause g = α−1

Y (IdY ). So we see that g ◦ f = IdY . Similarly, one can show
that f ◦ g = IdX , i.e. f and g are really inverses of each other. �

The full (covariant) version of the Yoneda’s lemma is this:

LEMMA 2.3.4. Let C be a category. For any object X of C, consider a covariant

representable functor hX : C → Sets. For any morphism X1
f−→X2, consider a

natural transformation hX2 → hX1 defined as follows: for any object Y of C, the
function

αY : hX2(Y ) = Mor(X2, Y )
·◦f−→Mor(X1, Y ) = hX1(Y )

is just a composition of g ∈ Mor(X2, Y ) with X1
f−→X2. This gives a functor

from C to the category of covariant functors C → Sets (with natural transforma-
tions as morphisms).

This functor is fully faithful, i.e. the set of morphisms X1 → X2 in C is identi-
fied with the set of natural transformations hX2 → hX1 .

Proof. For any morphism X1
f−→X2, the natural transformation α : hX2 →

hX1 is defined in the statement of the Lemma. Now suppose we are given a
natural transformationα : hX2 → hX1 . ApplyingαX2 to IdX2 ∈Mor(X2, X2)
gives some morphism f ∈ Mor(X1, X2). We claim that this establishes a
bijection between Mor(X1, X2) and natural transformations hX2 → hX1 .

Start with f ∈Mor(X1, X2). Then αX2 : Mor(X2, X2) →Mor(X1, X2)
is obtained by composing with f . In particular, αX2(IdX2) = f .

Finally, let us start with a natural transformation α : hX2 → hX1 . Then

f = αX2(IdX2) ∈Mor(X1, X2).

It defines a natural transformation β : hX2 → hX1 . We have to show that
α = β, i.e. that for any Y ∈ C, the map αY : Mor(X2, Y ) → Mor(X1, Y )
is just a composition with f . The argument is the same as in the previ-
ous Lemma. Start with any g ∈ Mor(X2, Y ) and consider a commutative
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square

Mor(X2, X2)
αX2> Mor(X1, X2)

Mor(X2, Y )
∨

αY
> Mor(X1, Y )

∨

where the vertical maps are compositions with X2
g−→Y . Take IdX2 and

follow it along the diagram. We get

IdX2

αX2 > f

g
∨

αY
> αY (g) = g ◦ f

∨

So αY (g) is exactly what we want: simply a composition with f . �

Why is Yoneda’s lemma useful? Very often we have to deal with situa-
tions when it is hard to construct a morphism X → Y between two objects
in the category directly. For example, it is hard to construct an explicit dif-
ferentiable map from one manifold to another. Yoneda’s lemma gives an in-
direct way of constructing morphisms. Of course, it works only if we have
a good understanding of (covariant or contravariant) functors hX and hY .
In this case we can try to define a natural transformation between these
functors instead of defining the morphism X → Y directly. Let’s work out
a simple example of this.

LEMMA 2.3.5. For any R-modules M and N , we have a canonical isomorphism

M ⊗R N ' N ⊗RM.

Proof. Of course this isomorphism just takes a pure tensor m⊗ n to n⊗m.
But since pure tensors are linearly dependent, we have to check that this
morphism is well-defined. For example, we can look at a bilinear map
M × N → N ⊗R M that sends (m,n) → n ⊗ m and use the universal
property to factor this bilinear map through the tensor product M ⊗R N .

Let’s repackage this argument to highlight how Yoneda’s lemma works.
We already know that hM⊗RN is naturally isomorphic to the functor of bi-
linear maps BilMapsM,N and of course hN⊗RM is naturally isomorphic to
the functor BilMapsN,M . So, by Yoneda’s lemma, to construct an explicit
isomorphism between M ⊗R N and N ⊗RM it suffices to construct an ex-
plicit natural isomorphism between functors BilMapsM,N and BilMapsN,M .
In other words, for each R-module K, we need a bijection αK between
BilMapsM,N (K) and BilMapsN,M (K), i.e. between the set of bilinear maps
M ×N → K and the set of bilinear maps N ×M → K that behaves “nat-
urally” in K, i.e. for each R-linear map K1 → K2, the following diagram
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commutes

BilMapsM,N (K1)
αK1> BilMapsN,M (K1)

BilMapsM,N (K2)
∨ αK2> BilMapsN,M (K2)

∨

where the vertical maps are just compositions withK1 → K2. It is clear that

αK is a very simple transformation: it just takes a bilinear mapM×N β−→K
to a bilinear map

N ×M →M ×N β−→K,

where the first map is a switch (n,m)→ (m,n). �

§2.4. Hilbert’s 3d Problem. As a fun application of tensors, let’s solve the
Hilbert’s 3d problem:

PROBLEM 2.4.1. Given two polytopes P,Q ⊂ R3 of the same volume, is it always
possible to cut P into polyhedral pieces and then reassemble them into Q?

Here a polytope is a 3-dimensional analogue of a polygon: we can define
it, for example, as a convex hull of finitely many points in R3.

For polygons, i.e. in dimension 2, the problem above has a positive solu-
tion, which can be seen by applying induction and various simple cutting
tricks. For example, it is easy to cut a triangle and then rearrange pieces to
get a rectangle: Notice that this actually proves that the area of a triangle is

equal to ah/2, where a is the base and h is the height.
This is a source of many cute puzzles, for example Figure 1 shows how

to cut a square into pieces that can be rearranged to get a regular hexagon.

FIGURE 1. Cut and Paste

If the answer to the 3-dimensional Problem were positive, it would be
possible to derive volume formulas for polytopes using geometry only.
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However, it was known since Archimedes that to prove the volume for-
mula even for a tetrahedron, one has to integrate! So people have long
suspected (at least since Gauss) that the answer to the Problem is negative.

After Hilbert stated his famous problems, the third problem was almost
immediately solved by his student, Max Dehn. Dehn’s idea was to intro-
duce some sort of a hidden volume: some invariant of polytopes different
from volume that nevertheless behaves additively if you cut a polytope
into pieces. To be more specific, let

Γ = R⊗Z (R/πZ)

(the tensor product of Abelian groups).

DEFINITION 2.4.2. For a polytope P , let E1, . . . , Er be the collection of its
edges. For each edge Ei, let li be its length and let αi be the angle between
faces meeting along Ei. We define the Dehn invariant D(P ) ∈ Γ as follows:

D(P ) :=
r∑
i=1

li ⊗ αi.

EXAMPLE 2.4.3. Let P be a cube with side a. The cube has 12 edges, each
has length a and angle π

2 . So we have

D(P ) =
12∑
i=1

a⊗ π

2
= a⊗

(
12
π

2

)
= a⊗ (6π) = a⊗ 0 = 0.

We will prove two lemmas:

LEMMA 2.4.4. If P is cut into polyhedral pieces P1, . . . , Ps then

D(P ) = D(P1) + . . .+D(Ps).

LEMMA 2.4.5. If Q is a regular tetrahedron then D(Q) 6= 0.

COROLLARY 2.4.6. The Hilbert’s third problem has a negative solution.

Indeed, if P is a cube then Lemma 2.4.3 shows that D(P ) = 0. If P
is cut into polyhedral pieces P1, . . . , Ps then D(P1) + . . . + D(Ps) = 0 by
Lemma 2.4.4. If Q is a regular tetrahedron then D(Q) 6= 0 by Lemma 2.4.5.
So by Lemma 2.4.4, we can not rearrange pieces P1, . . . , Ps to get Q.

Proof of Lemma 2.4.4. A complete proof is a bit tedious, so we will just give
a proof “by example” that completely explains what’s going on.
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Let P be a tetrahedron cut into two tetrahedra, a blue P ′ and a white P ′′.
The polytope P has six edges of length l1, . . . , l6 and with angles α1, . . . , α6:

D(P ) =
6∑
i=1

li ⊗ αi.

The first edge of P is cut between P ′ and P ′′, let l′1 and l′′1 be the legths
of the corresponding edges. Notice that l1 = l′1 + l′′1 . Likewise, the third
angle α3 is the sum of angles α′3 and α′′3 . Also, P ′ and P ′′ share two new
edges, of lengths m1 and m2 and with angles β′1, β′′1 , β′2 and β′′2 . Notice that
β′1 + β′′1 = π and β′2 + β′′2 = π. Now we are ready for bookkeeping:

D(P ′) = l′1 ⊗ α1 + l2 ⊗ α2 + l3 ⊗ α′3 + l6 ⊗ α6 +m1 ⊗ β′1 +m2 ⊗ β′2
D(P ′′) = l′′1 ⊗ α1 + l4 ⊗ α4 + l3 ⊗ α′′3 + l5 ⊗ α5 +m1 ⊗ β′′1 +m2 ⊗ β′′2

Adding D(P ′) and D(P ′′) together, we get

(l′1 + l′′1)⊗ α1 + l2 ⊗ α2 + l3 ⊗ (α′3 + α′′3) + l4 ⊗ α4 + l5 ⊗ α5 + l6 ⊗ α6+

m1 ⊗ (β′1 + β′′1 ) +m2 ⊗ (β′2 + β′′2 ) =

l1⊗α1 + l2⊗α2 + l3⊗α3 + l4⊗α4 + l5⊗α5 + l6⊗α6 +m1⊗ π+m2⊗ π =

l1 ⊗ α1 + l2 ⊗ α2 + l3 ⊗ α3 + l4 ⊗ α4 + l5 ⊗ α5 + l6 ⊗ α6 = D(P ).
We see that Lemma basically follows from the bilinearity of the tensor

product and from the fact that each time cutting creates new edges, the
sum of angles at these edges adds up to a multiple of π. �

Proof of Lemma 2.4.5. Let Q be a regular hexagon wigth side a. By the Law
of Cosines, the angle between its faces is equal to arccos 1

3 . So we have

D(Q) =
6∑
i=1

a⊗ arccos
1
3

= (6a)⊗ arccos
1
3
.

CLAIM 2.4.7. a⊗ α = 0 in R⊗ (R/πZ) if and only if either a = 0 or α ∈ Qπ.

Proof. We certainly have 0⊗ α = 0. If α = m
n π then

a⊗ α = a⊗ m

n
π =

(
n
a

n

)
⊗
(m
n
π
)

=
a

n
⊗
(
n
m

n
π
)

=
a

n
⊗ (mπ) = 0.

Now we prove another implication. Fix a0 6= 0 and α0 6= m
n π. Consider

R as a Q-vector space. Then a0 spans a 1-dimensional subspace L = Qa0.
We have a Q-linear function L→ Q that sends a0 to 1. This function can be
extended to Q-linear function l : R→ Q that sends a0 to 1.

We have a Z-bilinear function

R× R→ R, (a, α) 7→ l(a)α.

R contains πQ as a Z-submodule. Composing a map above with the pro-
jection R→ R/(πQ), we get a Z-bilinear function

R× R→ R/(πQ), (a, α) 7→ l(a)α+ πQ.
Notice that any pair of the form (a, πn) is mapped to 0 (because l(a) is a
rational number), so our function induces a Z-bilinear function

R× (R/πZ)
β−→R/(πQ), (a, α) 7→ l(a)α+ πQ.
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By the universal property of the tensor product, this bilinear map factors
through the tensor product:

R× (R/πZ)
β

> R/(πQ)

R⊗Z (R/πZ)

>

>

We have
β(a0, α0) = l(a0)α0 + πQ = α0 + πQ 6= 0.

Therefore,
a0 ⊗ α0 6= 0.

This shows the first Claim. �

CLAIM 2.4.8. If cos 2πm
n ∈ Q then it is equal to 1, 1

2 , 0, −1
2 , or −1. In particular,

arccos
1
3
6∈ Qπ.

Proof. Suppose cos 2πm
n ∈ Q. We can assume that m and n are coprime. Let

ξ = cos
2πm
n

+ i sin
2πm
n
∈ C.

Then ξ is a primitive n-th root of 1. Let Q(ξ) be the minimal field con-
taining ξ (a cyclotomic field) and let [Q(ξ) : Q] be the degree of this field
extension, i.e. the dimension of Q(ξ) over Q. Then

Q(ξ) ⊂ Q
(
i sin

2πm
n

)
= Q

(√
cos2

2πm
n
− 1

)
= Q(

√
r),

where r is a rational number. So Q(ξ) is at most a quadratic extension of Q,
and therefore,

[Q(ξ) : Q] = 1 or 2.

On the other hand, a basic fact from the Galois theory that we are going to
take on faith here is that

[Q(ξ) : Q] = φ(n),

where an Euler function φ(n) counts how many numbers between 0 and n
are coprime to n, i.e. how many elements of the ring Z/nZ are invertible.
Take a prime decomposition

n = pk11 . . . pks
s .

By the Chinese theorem on remainders, we have an isomorphism of rings

Z/nZ = Z/pk11 ⊕ . . .⊕ Z/pks
s .

This isomorphism induces an isomorphism of groups of invertible elements

(Z/nZ)∗ = (Z/pk11 )∗ × . . .× (Z/pks
s )∗.

This gives a formula
φ(n) = φ(pk11 ) . . . φ(pks

s ).
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It is clear that φ(pk) = pk − pk−1 because a number is coprime to pk if and
only if it is coprime to p, and Z/pkZ contains exactly pk−1 elements that are
divisible by p. So we have

φ(n) = (pk11 − p
k1−1
1 ) . . . (pks

s − pks−1
s ) =

= pk1−1
1 . . . pks−1

s × (p1 − 1) . . . (ps − 1).
If φ(n) ≤ 2 then each pi ≤ 3 and each ki ≤ 2. Going through the list of
possibilities, we see that the only solutions are

n = 1, 2, 3, 4, 6.

This gives the Claim. �

Combining two claims finishes the proof of the Hilbert’s 3d problem. �

§2.5. Right-exactness of a tensor product. Let’s fix an R-module M and
study the operation of “tensoring with M”:

N 7→ N ⊗RM.

This gives a map from the category of R-modules to itself. Moreover, for

any R-linear map N
f−→N ′, we can define an R-linear map

N ⊗RM
f⊗Id−→ N ′ ⊗RM, n⊗m 7→ f(n)⊗m.

Of course pure tensors are not linearly independent, so we have to check
that f ⊗ Id is well-defined. This can be done as follows. We have a map

N ×M → N ′ ⊗RM, (n,m) 7→ f(n)⊗m,
which is clearly bilinear. So, by the universal property of the tensor prod-
uct, it gives a linear map

N ⊗RM → N ′ ⊗RM,

which is exactly our map f ⊗ Id.

LEMMA 2.5.1. “Tensoring withM” functor ·⊗RM is a functor from the category
of R-modules to itself.

Proof. To show that something is a functor, we have to explain how it acts
on objects and morphisms in the category (this is done above), and then
check axioms of a functor. There are two axioms: a functor should preserve
identity maps and compositions of maps.

This is an example of a calculation that’s much easier to do in your head
than to read about. Still, let’s give a proof just to show how it’s done.

IfN → N is an identity map, thenN⊗RM
Id⊗ Id−→ N⊗RM is also obviously

an identity map.

Suppose we have mapsN
f−→N ′

g−→N ′′. Let’s compute the composition

N ⊗RM
f⊗Id−→ N ′ ⊗RM

g⊗Id−→N ′′ ⊗RM.

It takes a pure tensor n ⊗ m to the pure tensor f(n) ⊗ m and then to the
tensor g(f(n))⊗m = (g ◦ f)(n)⊗m. The map

N ⊗RM
(g◦f)⊗Id−→ N ′′ ⊗RM
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has the same effect on pure tensors. Since pure tensors span N ⊗R M , we
see that

(g ⊗ Id) ◦ (f ⊗ Id) = (g ◦ f)⊗ Id,
which exactly means that tensoring with M preserves composition. �

LEMMA 2.5.2. There exists a canonical isomorphismR⊗RM 'M , r⊗m 7→ rm.

Proof 1. For any R-module K, an R-bilinear map R ×M F−→K defines an

R-linear map M
f−→K by formula f(m) = F (1,m). And vice versa, an

R-linear map M
f−→K defines an R-bilinear map R × M

F−→K by for-
mula F (r,m) = rf(m). This gives a natural (in K) bijection between bi-
linear maps R ×M → K and linear maps M → K. It follows that func-
tors BilMapsR,M and hM are naturally isomorphic. It follows that functors
hR⊗RM and hM are naturally isomorphic. By Yoneda’s lemma, it follows
that R ⊗R M and M themselves are isomorphic. To see that this isomor-
phism has the form r ⊗m 7→ rm, recall that the proof of Yoneda’s lemma
is constructive: to find an isomorphism we have to apply the natural trans-
formation to the identity morphism. So take K = M and f = IdM in the
analysis above. Then F (r,m) = rm. �

Proof 2. Define a bilinear mapR×M →M by formula (r,m) 7→ rm. By the
universal property of the tensor product, it factors through a linear map

R⊗RM
B−→M, r ⊗m 7→ rm.

This map is clearly surjective (take r = 1). Take a tensor
∑

i ri⊗mi ∈ KerB.
Then

∑
i rimi = 0. It follows that∑

i

ri ⊗mi =
∑
i

ri(1⊗mi) =
∑
i

1⊗ (rimi) =

= 1⊗

(∑
i

rimi

)
= 1⊗ 0 = 0.

So B is also injective. �

Now the main result:

THEOREM 2.5.3. · ⊗RM is a right-exact functor, i.e. for any exact sequence

N ′
f−→N

g−→N ′′ → 0, (9)

the induced sequence

N ′ ⊗RM
f⊗Id−→ N ⊗RM

g⊗Id−→N ′′ ⊗RM → 0

is also exact.

Proof. To show that g ⊗ Id is surjective, it suffices to show that any pure
tensor n′′ ⊗m ∈ N ′′ ⊗R M is in the image of g ⊗ Id. But g is surjective, so
n′′ = g(n) for some n, and then n′′ ⊗m = g(n)⊗m.

Next we show that

Im(f ⊗ Id) ⊂ Ker(g ⊗ Id).
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Indeed, any tensor in the image of f ⊗ Id can be written as
∑

i f(n′i) ⊗m.
Applying g ⊗ Id, we get∑

i

g(f(n′i))⊗m =
∑
i

0⊗m = 0.

The only non-trivial calculation is to show that

Ker(g ⊗ Id) ⊂ Im(f ⊗ Id).

Consider a bilinear map

β : N ×M → N ⊗RM → (N ⊗RM)/ Im(f ⊗ Id),

where the second map is just a projection. For any n′ ∈ N ′, we

β(f(n′),m) = f(n′)⊗m+ Im(f ⊗ Id) = 0.

So β induces a bilinear map

β̃ : (N/ Im f)×M → (N ⊗RM)/ Im(f ⊗ Id)

by a well-defined formula

β̃(n+ Im f,m) := β(n,m).

Since (9) is exact, we have

N/ Im f ' N/Ker g ' N ′′.

So β̃ induces a bilinear map

β̃ : N ′′ ×M → (N ⊗RM)/ Im(f ⊗ Id),

which operates as follows: for any pair (n′′,m), write n′′ = g(n), then

β̃(n′′,m) = n⊗m+ Im(f ⊗ Id).

By the universal property of the tensor product, β̃ factors through the linear
map

B̃ : N ′′ ⊗RM → (N ⊗RM)/ Im(f ⊗ Id)
such that

B̃(g(n)⊗m) = n⊗m+ Im(f ⊗ Id).

The main point is that B̃ is a well-defined map. Here is the main calcu-
lation: take

∑
i ni ⊗m ∈ Ker(g ⊗ Id), i.e.

∑
i g(ni)⊗m = 0. Then

B̃

(∑
i

g(ni)⊗m

)
= B̃(0) = 0.

But on the other hand,

B̃(
∑
i

g(ni)⊗m) =
∑
i

B̃(g(ni)⊗m) =
∑
i

ni ⊗m+ Im(f ⊗ Id).

It follows that ∑
i

ni ⊗m ∈ Im(f ⊗ Id),

and so Ker(g ⊗ Id) ⊂ Im(f ⊗ Id). �

Right-exactness is a very useful tool for computing tensor products.
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PROPOSITION 2.5.4. Suppose N is a finitely presented R-module, i.e. we have an
exact sequence

Rn
A−→Rm → N → 0,

where A is an m× n matrix of elements of R. Then

N ⊗M 'Mm/ Im[Mn A−→Mm],

where an R-linear map A : Mn A−→Mm just multiplies a column vector of n
elements of M by a matrix A.

Proof. This immediately follows from Lemma 2.5.2 and right-exactness of
a tensor product. Indeed, exactness of the presentation of N implies exact-
ness of the sequence

Mn A−→Mm → N ⊗M → 0

and Proposition follows. �

EXAMPLE 2.5.5. Let’s compute Z6 ⊗Z Z9. Take a presentation for Z6:

Z ·6−→Z→ Z6 → 0

and tensor it with Z9:

Z9
·6−→Z9 → Z6 ⊗Z Z9 → 0.

So Z6⊗Z Z9 is isomorphic to the quotient of Z9 by a submodule of multiples
of 6. Since g.c.d.(6, 9) = 3, this is the same thing as the quotient of Z9 by a
submodule of multiples of 3. So

Z6 ⊗Z Z9 ' Z9/3Z9 ' Z3.

§2.6. Restriction of scalars. Recall that if V is a complex vector space, we
can also consider V as a real vector space by “forgetting” how to multiply
by i ∈ C. This gives a forgetful functor

VectC → VectR,

called restriction of scalars. Restriction of scalars doubles dimension: if
{e1, . . . , en} is a basis of V (over C) then the basis of V over R is given by

{e1, . . . , en, ie1, . . . , ien}
We can define restriction of scalars in a much broader setting of modules.

Consider an arbitrary homomorphism of rings

f : R→ S

(in the example above, this is just an inclusion of fields R ↪→ C). Suppose
M is an S-module. We claim that we can also view M as an R-module, by
keeping an old structure of an Abelian group on M , and defining an action
of an element r ∈ R on m ∈M by formula

(r,m) 7→ f(r)m.

It is easy to see that this endows M with a structure of an R-module: an
expression f(r)m ∈M is bilinear in both r and m, and also we have

f(r1r2)m = [f(r1)f(r2)]m = f(r1) (f(r2)m) .
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Also, for any S-linear map of S-modules M1 → M2, the same map is also
automatically R-linear, and so we get a “restriction of scalars” functor

ModS →ModR .

EXAMPLE 2.6.1. The map R ↪→ C is an inclusion, but restriction of scalars
is also very interesting in the opposite case when f : R → S is surjective,
i.e. when S ' R/I , where I ⊂ R is some ideal. We can ask, which R-
modules can be obtained by restricting of scalars from R/I-modules? In
other words, which R-modules M can also be viewed as R/I-modules?
The condition is simple: I should act trivially on M , i.e. we should have
rm = 0 for any r ∈ I , m ∈ M . For example, modules over Z/4Z can be
identified with Z-modules (i.e. Abelian groups) where 4 acts trivially. For
instance, if this module is finitely generated, then the structure theorem of
finitely generated Abelian groups implies that M is a direct sum of several
copies of Z/2Z and Z/4Z.

§2.7. Extension of scalars. Going back to complex and real vector spaces,
we have a much more interesting functor

VectR → VectC,

called complexification, or extension of scalars, which is defined as follows.
For any vector space V over R, consider the set of pairs of vectors (v1, v2),
which we are going to write as “formal” linear combinations v1 + iv2, and
define the multiplication by r = a+ bi ∈ C as usual:

(a+ bi)(v1 + iv2) = (av1 − bv2) + i(av2 + bv1).

It is easy to see that this gives a vector space VC over C called complexifi-
cation of V . For example, if V is a vector space of real column vectors then
VC is a vector space of complex column-vectors.

Moreover, for any R-linear map V
f−→V ′, we have an induced C-linear

map VC → V ′C that sends v1 + iv2 to f(v1) + if(v2). So the complexification
is indeed a functor VectR → VectC. Notice that if {e1, . . . , en} is a basis of
V (over R) then {e1, . . . , en} is also a basis of VC (over C), i.e. complexifi-
cation preserves dimensions. However, the basis of VC over R is equal to
{e1, . . . , en, ie1, . . . , ien}, and so VC over R has the same dimension as the
tensor product V ⊗R C, because C (as a vector space over R) has basis {1, i}.
In fact, VC (as a real vector space) is isomorphic to V ⊗R C. This isomor-
phism is independent of the choice of basis and simply takes v1 + iv2 to
v1 ⊗ 1 + v2 ⊗ i. However, V ⊗R C is just a real vector space but VC is a
complex vector space. Is it possible to introduce the structure of a compex
vector space on V ⊗R C directly?

We will see that this is easy, and can be done in a framework of modules.
Consider an arbitrary homomorphism of rings

f : R→ S

(in the example above, this was an inclusion of fields R ↪→ C). Suppose
M is an R-module and we want to construct an S-module. First of all,
notice that S, as any other S-module, can be viewed as an R-module by
“restriction of scalars” construction above. So we can form a tensor product

M ⊗R S
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This is not yet what we want, becauseM⊗RS is anR-module, but we want
an S-module. So we are going to define the action of S on M ⊗R S by, as
usual, defining it on pure tensors first by formula

(s,m⊗ s′) 7→ m⊗ (ss′)

LEMMA 2.7.1. This gives a well-defined S-module structure on M ⊗R S, called
the extension of scalars from M .

Proof. Why is this well-defined? Consider an R-bilinear map

M × S →M ⊗R S, (m, s′) 7→ m⊗ (ss′)

By linear extension, it gives an R-linear map

M ⊗R S →M ⊗R S, m⊗ s′ 7→ m⊗ (ss′),

which is exactly what we want.
The only thing to check is that this indeed gives an action of S, i.e. that

all axioms of an S-module are satisfied. Our action on arbitrary tensors is(
s,
∑
i

mi ⊗ s′i

)
7→
∑
i

mi ⊗ (ss′i).

This is bilinear both in s and in linear combinations
∑

imi ⊗ s′i. Finally, we
have to check that the effect of multiplying by s1s2 is the same as multiply-
ing by s2 and then multiplying by s1. This is clear. �

§2.8. Exercises. In this worksheet, k is a field,R is a commutative ring, and
p is a prime.

1. (a) Let n,m ∈ Z and let d be their g.c.d. Prove that

(Z/nZ)⊗Z (Z/mZ) ' Z/dZ.
(b) Let R be a PID, let x, y ∈ R, and let d be their g.c.d. Prove that

(R/(x))⊗R (R/(y)) ' R/(d).

2. An R-module M is called flat, if for any short exact sequence

0→ N ′ → N → N ′′ → 0

of R-modules, a sequence

0→ N ′ ⊗M → N ⊗M → N ′′ ⊗M → 0

is also exact. Classify all finitely generated flat Z-modules.
3. Let V be a vector space over k. Show that V is a flat k-module.
4. Let M be an R-module and let I ⊂ R be an ideal. Prove that

M ⊗R (R/I) 'M/(IM).

5. Compute (x, y)⊗k[x,y]

(
k[x, y]/(x, y)

)
.

6. LetR→ S be a homomorphism of rings and letM,N be two S-modules.
By restriction of scalars, we can also view M and N as R-modules. Show
that if M ⊗R N = 0 then M ⊗S N = 0. Is the converse true?
7. Let M and N be finitely generated modules over the ring of power se-
ries k[[x]]. Show that if M ⊗k[[x]] N = 0 then either M = 0 or N = 0.
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8. Consider linear maps of k-vector spaces A : U → V and A′ : U ′ → V ′.
We define their tensor product A⊗A′ to be a linear map U ⊗k U ′ → V ⊗V ′
such that

(A⊗A′)(u⊗ u′) = A(u)⊗A(u′).
(a) Show that A⊗ A′ is well-defined. (b) Compute the Jordan normal form

of A ⊗ A′ if A and A′ both have Jordan form
[
0 1
0 0

]
. (c) Give a general

formula for Tr(A⊗A′).
9. Let V be a finite-dimensional vector space and let V ∗ be its dual space.
Construct a canonical isomorphism (independent of the basis) between
(a) V ∗ ⊗ V ∗ and the vector space of bilinear maps V × V → k; (b) V ∗ ⊗ V
and the vector space of linear maps V → V .
10. Let M,N be two R-modules. Let HomR(M,N) be the set of R-linear
maps M → N . (a) Show that HomR(M,N) is an R-module. (b) Show
that Hom(·,M) is a left-exact contravariant functor from the category of
R-modules to itself.
11. Let M1,M2,M3 be R-modules. Construct a canonical isomorphism be-
tween (M1 ⊗R M2) ⊗R M3 and M1 ⊗R (M2 ⊗R M3). Describe a covariant
functor represented by this module without using a word “tensor”.
12. Let R be a ring. An R-algebra S is a data that consists of a ring S and
a homomorphism of rings R → S. Then S is both a ring and an R-module
(by restriction of scalars). For example, k[x] is a k-algebra. (a) Show that if
S1, S2 are two R-algebras then S1 ⊗R S2 is also an R-algebra such that

(s1 ⊗ s2)(s′1 ⊗ s′2) = (s1s
′
1)⊗ (s2s

′
2)

(check that this multiplication is well-defined, satisfies all axioms of a com-
mutative ring with 1, and there is a natural homomorphismR→ S1⊗RS2.)
(b) Prove that k[x]⊗k k[y] ' k[x, y].
13. Construct a non-trivial Abelian group M such that M ⊗Z M = 0.
14. For any R-modules M1, M2, and N , construct a canonical isomorphism
between (M1 ⊕ M2) ⊗R N and (M1 ⊗R N) ⊕ (M2 ⊗R N). Generalize to
arbitrary direct sums (with more than two summands).

§3. ALGEBRAIC EXTENSIONS

§3.1. Field Extensions. Let K ⊂ F be fields. Then F is called a field exten-
sion of K. Examples: R ⊂ C, Q ⊂ Q(

√
2), etc.

DEFINITION 3.1.1. An element α ∈ F is called algebraic over K if α is a root
of a non-constant polynomial with coefficients inK. An element α is called
transcendental if it is not algebraic.

• i ∈ C is a root of x2 − 1, so i is algebraic over Q.
• π ∈ R is transcendental over Q (Lindemann’s Theorem).
• x ∈ C(x) is transcendental over C (obvious).

DEFINITION 3.1.2. Let α ∈ F be algebraic. A polynomial f(x) ∈ K[x] is
called a minimal polynomial of α if f(x) is a monic non-costant polynomial
of minimal degree such that f(α) = 0.
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Let us point out one persistent notational ambiguity. If x is a variable
then K[x] denotes the algebra of polynomials and K(x) denotes the field
of rational functions (i.e. ratios of polynomials) in variable x. But if α ∈ F
then K[α] denotes the minimal subring of F generated by K and by α and
K(α) denotes the minimal subfield of F generated by K and by α. These
objects are related as follows:

THEOREM 3.1.3. Let α ∈ F . We have a unique surjective homomorphism

φ : K[x]→ K[α]

that sends x to α. If α is algebraic then Kerφ is generated by the minimal polyno-
mial f(x), which is unique and prime. In this case the map φ does not extend to
the map K(x) → K(α). In fact, in this case K(α) = K[α] is finite-dimensional
over K and elements 1, α, . . . , αn−1 form a basis, where n = deg(x).

If α is transcendental then φ is an isomorphism, which induces an isomorphism
of fields K(x) ' K(α).

Proof. Kerφ is an ideal of all polynomials that vanish at α. Kerφ = 0 if and
only if α is transcendental (by definition). In this case

K[x] ' K[α] ⊂ F.
Any injective homomorphism of a domain into a field extends to the inhec-
tive homomorphism of its field of fractions. So in our case φ extends to the
injective homomorphism K(x)→ F , and its image is obviously K(α).

If α is algebraic then, since K[x] is a PID, Kerφ is generated by a unique
monic polynomial f(x), hence a minimal polynomial is unique. Since

K[x]/Kerφ ' K[α]

injects in F , which is a domain, K[x]/Kerφ is also a domain, hence f(x) is
irreducible and Kerφ = (f) is a maximal ideal. HenceK[x]/Kerφ is a field.
Therefore, K[α] is a field. Therefore, K[α] = K(α).

Finally, we notice that 1, α, . . . , αn−1 are linearly independent over K
(otherwise we can find a smaller degree polynomial vanishing at α) and
span K[α] over K. Indeed, since f(x) = xn + . . . vanishes at α, we can
rewrite αn as a linear combination of smaller powers of α. Then, an easy
argument by induction shows that we can rewrite any αm for m > n as as
a linear combination of 1, α, . . . , αn−1. �

DEFINITION 3.1.4. The dimension dimK F is called the degree of F over K.
Notation: [F : K]. For example, [C : R] = 2. If [F : K] <∞ then F is called
a finite extension of K. An extension K ⊂ F is called algebraic if any element
of F is algebraic over K.

COROLLARY 3.1.5. If α is algebraic overK then [K(α) : K] is equal to the degree
of the minimal polynomial of α.

LEMMA 3.1.6. Consider a tower of field extensions

K ⊂ F ⊂ L.
If [F : K] = n and [L : F ] = m then [L : K] = nm.

Proof. It is easy to prove a bit more: if e1, . . . , em is a basis of L over F and
f1, . . . , fn is a basis of F over K then {eifj} is a basis of L over K. �
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THEOREM 3.1.7. (a) Any finite extension is algebraic.
(b) Let α1, . . . , αr ⊂ F be algebraic over K. Then

K(α1, . . . , αr) = K[α1, . . . , αr]

is finite over K. In particular, any element of K(α1, . . . , αr) is algebraic over K.

Proof. If [F : K] < ∞ then 1, α, α2, . . . are linearly dependent over K for
any α ∈ F . Therefore, some non-constant polynomial with coefficient in K
vanishes at α, i.e. α is algebraic.

Now suppose that α1, . . . , αr ⊂ F are algebraic over K. Arguing by in-
duction (with the base of induction given by Theorem 3.1.3), let’s assume
that K(α1, . . . , αr−1) = K[α1, . . . , αr−1] is finite over K. Since αr is alge-
braic overK, it is also algebraic overK(α1, . . . , αr−1). Using Theorem 3.1.3,
we see that

K(α1, . . . , αr−1)[αr] = K(α1, . . . , αr−1)(αr) = K(α1, . . . , αr−1, αr)

is finite-dimensional over K(α1, . . . , αr−1). Then [K(α1, . . . , αr) : K] < ∞
by Lemma 3.1.6. The last statement of part (b) follows from part (a). �

§3.2. Adjoining roots. In the previous section we studied a fixed extension
K ⊂ F . If α ∈ F is algebraic over K then K(α) is isomorphic to K[x]/(f),
where f(x) is a minimal polynomial ofα. An algebraic extensionK ⊂ K(α)
generated by one element is sometimes called simple.

Now we will start with a field K and learn how to build its extensions
and compare them. The main building block is the same:

LEMMA 3.2.1. If f(x) ∈ K[x] is irreducible and monic then K[x]/(f) is a field
extension of K generated by α := x+ (f). The minimal polynomial of α is f(x).

Proof. Since f is irreducible and K[x] is a PID, K[x]/(f) is a field. It is
obviously generated by α. Since f(x) ≡ 0 mod (f), α is a root of f(x).
Since f(x) is irreducible over K, f(x) is the minimal polynomial of α. �

We will often want to compare two extensions F and F ′ of the same field.
We say that F and F ′ are isomorphic over K if there exists an isomorphism
φ : F → F ′ such that φ(a) = a for any a ∈ K. Here is the basic fact:

LEMMA 3.2.2. LetK(α) andK(β) be algebraic extensions ofK such that α and β
have the same minimal polynomial. Then K(α) is isomorphic to K(β) over K.

Proof. The analysis above shows that both of these fields are isomorphic to
K[x]/(f), where f(x) is the common minimal polynomial. Notice that an
induced isomorphism between K(α) and K(β) simply sends α to β. �

EXAMPLE 3.2.3. Fields Q( 3
√

2) and Q(ω 3
√

2) are isomorphic (here ω is a prim-
itive cubic root of unity), because they have the same minimal polynomial
x3 − 2. However, they are not equal inside C because Q( 3

√
2) is contained

in R but the other field is not.

Next we would like to adjoin all roots of a polynomial.

DEFINITION 3.2.4. A field F ⊃ K is called a splitting field of f(x) ∈ K[x] if
• f splits into linear factors in F [x], and
• F is generated by roots of f(x).
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In other words, f(x) splits in F but not in any proper subfield of F .

LEMMA 3.2.5. Any polynomial f(x) ∈ K[x] has a splitting field. Moreover, any
two splitting fields L and L′ are isomorphic over K.

Proof. Existence is proved by induction on deg f : if f(x) does not split then
it has an irreducible factor g(x) of degree greater than one. Lemma 3.2.1
gives an extension K ⊂ L = K(α) such that g(x) has a root α ∈ L. Then
f(x)/(x − α) ∈ L[x] has a splitting field F ⊃ L by inductive assumption.
Then F is a splitting field of f(x) ∈ K[x] as well.

Now we have to construct an isomorphism between two splitting fields
L and L′ over K. It is enough to construct an injective homomorphism
φ : L → L′ that preserves K. Indeed, if f(x) = c

∏
i(x − αi) in L then

f(x) = φ(c)
∏
i(x− φ(αi)) in φ(L), so f(x) splits in φ(L), so φ(L) = L′.

We will construct φ step-by-step. Choose a root α ∈ L of f(x). Let g(x)
be the minimal polynomial of α. Then g(x) divides f(x), and in particular
g(x) splits in L′. Let β be a root of g(x) in L′. Since α and β have the
same minimal polynomial, K(α) and K(β) are isomorphic over K. Fix one
isomorphism,

φ0 : K(α)→ K(β).
Now we have a diagram of field maps

L L′

K(α)
∪

∧

φ0
> K(β)

∪

∧
(1)

Notice that L is a splitting field of f(x) over K(α) and L′ is a splitting
field of f(x) over K(β). So ideally, we would like to finish by induction
by continuing to add roots of α. However, notice that the set-up is slightly
different: before we were trying to show that L and L′ are isomorphic over
K, and now we are trying to construct an isomorphism φ : L → L′ that
extends a given isomorphism φ0 : K(α)→ K(β). So the best thing to do is
to generalize our Lemma a little bit to make it more suitable for induction.
This is done in the next Lemma. �

LEMMA 3.2.6. Suppose we have a diagram of homomorphisms of fields
L1 L2

K1

∪

∧

ψ
> K2

∪

∧
(2)

where L1 is a splitting field of f1(x) ∈ K1[x], the polynomial f2(x) ∈ K2[x] splits
in L2, and f2(x) is a polynomial obtained by applying ψ to all coefficients of f1(x).
Then there exists a homomorphism φ : L1 → L2 such that φ|K1 = ψ (i.e. that
makes a diagram commutative).

Proof. Choose a root α ∈ L1 of f1(x). Let g1(x) be the minimal polynomial
of α. Then g1(x) divides f1(x). We have a homomorphism

Ψ : K1[x]→ K2[x]
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that extends ψ. Then f2 = Ψ(f1). Let g2 = Ψ(g1). Then g2|f2, and in
particular g2(x) splits in L2. Let β be a root of g2(x) in L2. Let g′2(x) ∈ K2[x]
be an irreducible factor of g2(x) with root β. Then

K1(α) ' K1[x]/(g1) and K2(β) ' K2[x]/(g′2).

Notice that Ψ induces a homomorphism K1[x]/(g1) → K2[x]/(g′2). This
gives an homomorphism

φ0 : K1(α)→ K2(β)

that sends α to β and such that φ0|K1 = ψ. Now we have a commutative
diagram of field maps

L1 L2

K1(α)
∪

∧

φ0
> K2(β)

∪

∧

K1

∪

∧

ψ
> K2

∪

∧
(3)

Notice that L1 is a splitting field of f1(x) over K1(α) and L2 is a splitting
field of f2(x) over K2(β). So we are in the same set-up as in the statement
of the Lemma, but now [L1 : K1(α)] < [L1 : K1]. So we can finish by
induction on [L1 : K1]. �

§3.3. Algebraic Closure.

LEMMA 3.3.1. Let K be a field. The following are equivalent:
• any polynomial f ∈ K[x] has a root in K.
• any polynomial f ∈ K[x] splits in K.
• The only algebraic extension of K is K itself.

Proof. Easy. �

If any of these conditions are satisfied thenK is called algebraically closed.

DEFINITION 3.3.2. Le K be a field. A field K̄ containing K is called an
algebraic closure of K if

• K̄ is algebraically closed.
• K ⊂ K̄ is an algebraic extension.

For example, C is an algebraic closure of R but not of Q.

LEMMA 3.3.3. Let K ⊂ F be a field extension with F algebraically closed. Then

K̄ = {a ∈ F | a is algebraic over F}
is an algebraic closure of K.

Proof. If α, β ∈ K̄ then K(α, β) is finite algebraic over K. In particular, K̄ is
a field (obviously algebraic overK). Any polynomial f(x) = xn+a1x

n−1 +
. . . + an in K̄[x] has a root α ∈ F . Then K(a1, . . . , an) is finite over K,
K(a1, . . . , an)(α) is finite over K(a1, . . . , an). Therefore, [K(α) : K] < ∞
and α is algebraic. �
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For example, if K = Q and F = C then K̄ = Q̄, the field of all algebraic
numbers.

LEMMA 3.3.4. Any field K is contained in a field F such that any polynomial in
K[x] has a root in F .

Proof. The idea is to adjoin roots of all polynomials at once. Let K[xf ] be
the algebra of polynomials in variables xf , one variable for each irreducible
polynomial with coefficients in K. Consider the ideal

I = 〈f(xf )〉

with one generator for each irreducible polynomial f . Notice that each
polynomial is a polynomial in its own variable. We claim that I is a proper
ideal. If not, then we can write

1 =
s∑
i=1

gifi(xfi
),

where gi are some polynomials that involve only finitely many variables
xf . Let L be a splitting field of the product f1 . . . fs. The formula above
remains valid in L[xf ]. However, if we plug-in any root of f for xf , we will
get 1 = 0, a contradiction. It follows that I is a proper ideal.

Let M be a maximal ideal containing I . Then F := K[xf ]/M is a field
that contains K. We claim that any irreducible polynomial f ∈ K[x] has a
root in F . Indeed, f(xf ) ∈M , and therefore xf +M is a root of f in F . �

THEOREM 3.3.5. Any field K has an algebraic closure. It is unique up to an
isomorphism over K.

Proof. Applying Lemma 3.3.4 inductively gives an infinite tower of fields

K = F0 ⊂ F1 ⊂ F2 ⊂ . . .

such that any polynomial in Fk[x] has a root in Fk+1. Then F = ∪iFi is
algebraically closed as any polynomial in F [x] in fact belongs to some Fk[x],
and therefore has a root in F . Applying Lemma 3.3.3 gives an algebraic
closure K̄.

Let K̄, K̄1 be two algebraic closures of K. It suffices to show that there
exists a homomorphism φ : K̄ → K̄1 over K. Indeed, φ(K̄) is then another
algebraic closure of K contained in K̄1. Since K̄1 is algebraic over φ(K̄), it
must be equal to it.

Finally, we construct φ using Zorn’s lemma. Consider a poset of pairs
(F, φ), where K ⊂ F ⊂ K̄ and φ : F → K̄1 is a homomorphism over K.
We say that (F, φ) ≤ (F1, φ1) if F ⊂ F1 and φ is the restriction of φ1 to F .
Then any chain has a maximal element (F, φ) (take the union of fields in
the chain and the map φ induced by maps in the chain). This maximal field
must be equal to K̄: if F is properly contained in K̄ then take any α ∈ K̄\F .

By Lemma 3.2.6, we can extend φ to a homomorphism F (α)→ K̄1. �

The same argument shows the following slightly more useful statement:
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PROPOSITION 3.3.6. Suppose we have a diagram of homomorphisms of fields
L1

K1

∪

∧

ψ
> K2

(4)

where L1 is algebraic over K1 and K2 is algebraically closed. Then there exists
a homomorphism φ : L1 → K2 such that φ|K1 = ψ (i.e. that makes a diagram
commutative).

§3.4. Finite Fields.

THEOREM 3.4.1. For any prime p and positive integer n, there exists a field Fpn

with pn elements. Moreover, any two such fields are isomorphic. We can embed
Fpm in Fpn if and only if m divides n.

Proof. Let K be a splitting field of the polynomial f(x) = xp
n − x ∈ Fp[x].

Since f ′(x) = −1 is coprime to f(x), there are exactly pn roots. Recall that
F : K → K, F (x) = xp is a Frobenius homomorphism. In particular, if α
and β are roots of f(x) then ±α ± β and αβ, and α/β are roots as well. It
follows that K has pn elements and all of them are roots of f(x).

Suppose K is a field with pn elements. The group of units K∗ is Abelian
of order pn − 1, and therefore xp

n−1 = 1 for any x ∈ K∗.1 It follows that
K is a splitting field of xp

n − x. But any two splitting fields of the same
polynomial are isomorphic by Lemma 3.2.5.

If Fpm ⊂ Fpn then the latter field is a vector space (of some dimension r)
over the former. It follows that

pn = (pm)r = pmr.

It follows that m divides n.
Finally, suppose thatm divides n. Then pm−1|pn−1 (easy), and therefore

xp
m−1−1xp

n−1−1 (equally easy). It follows that the splitting field of xp
m−x

is contained in the splitting field of xp
n − x. �

§3.5. Exercises.
In this set we fix a field extension K ⊂ F .

1. Let R be an infinite domain and let f ∈ R[x]. Prove that f(r) 6= 0 for
infinitely many r ∈ R. What if R is not necessarily a domain?
2. (a) Show α ∈ F is algebraic over K if and only if F contains a finite-
dimensional K-vector subspace L (not necessarily a subfield) such that

α · L ⊂ L.
(b) Find the minimal polynomial of

√
2 +
√

5 over Q.
3. (a) LetR be a domain and letR ⊂ K be its field of fractions. Show thatK
satisfies the following universal property: for any injective homomorphism
ψ : R → F to a field, there exists a unique homomorphism of fields K →
F that extends ψ. (b) Let Fields be the category of fields (what can you

1Recall that in fact this analysis implies that K∗ is a cyclic group. Indeed, otherwise we
would have xr = 1 for any x ∈ K∗ and r < pn − 1. However, the polynomial can not have
more roots than its degree.
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say about morphisms in this category?). Let R be a domain and let FR :
Fields → Sets be a covariant functor that sends any field k to the set of
injective homomorphisms R → k. This definition is not complete: give a
complete definition of this functor and show that it is representable.
4. (a) Show that f(x) = x3 + x2 + x+ 3 is irreducible over Q. (b) Consider
the field F = K(α), where α is a root of f(x). Express 1

2−α+α2 as a Q-linear
combination of 1, α, and α2.
5. Find the degree (over Q) of the splitting field of (a) x4 + x3 + x2 + x+ 1.
(b) x4 − 2.
6. For all positive integers n and m, compute the degree [Q(

√
n,
√
m) : Q].

7. Let K ⊂ F be an algebraic extension and let R be a subring of F that
contains K. Show that R is a field.
8. Let f(x) ∈ K[x] be a polynomial of degree 3. Show that if f(x) has a root
in a field extension K ⊂ F of degree 2 then f(x) has a root in K.
9. Let α, β ∈ F be algebraic over K, let f(x) and g(x) be their minimal
polynomials, and suppose that deg f and deg g are coprime. Prove that
f(x) is irreducible in K(β)[x].
10. Find the splitting field of xp − 1 over Fp.
11. Let K ⊃ Q be a splitting field of a cubic polynomial f(x) ∈ Q[x]. Show
that if [K : Q] = 3 then f(x) has 3 real roots.
12. Let Fpn be a finite field with pn elements and let F : Fpn → Fpn be the
Frobenius map, F (x) = xp. Show that F is diagonalizable (as an Fp-linear
operator) if and only if n divides p− 1.
13. Let F = K(α) and suppose that [F : K] is odd. Show that F = K(α2).
14. Let f(x) ∈ K[x] be an irreducible polynomial and let g(x) ∈ K[x] be
any non-constant polynomial. Let p(x) be a non-constant polynomial that
divided f(g(x)). Show that deg f divides deg p.
15. Show that the polynomial x5 − t is irreducible over the field C(t) (here
t is a variable). Describe a splitting field.
16. Let Fq be a finite field with q elements (q is not necessarily prime).
Compute the sum

∑
a∈Fq

ak for any integer k.
17. Show that the algebraic closure of Fp is equal to the union of its finite
subfields:

F̄p =
∞⋃
n=1

Fpn .
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§4. GALOIS THEORY

Let K ⊂ F be an algebraic extension. For convenience, in this section we
fix an algebraic closure K̄ of K and assume that F ⊂ K̄.

§4.1. Separable Extensions.

DEFINITION 4.1.1. An element α ∈ F is called separable over K if its mini-
mal polynomial has no multiple roots.

LEMMA 4.1.2. Let α ∈ F and let f(x) be its minimal polynomial. Then α is not
separable if and only if charK = p and f ′(x) ≡ 0.

Proof. Indeed, f(x) has a multiple root if and only the g.c.d. of f(x) and
f ′(x) has positive degree. This greatest common divisor belongs to K[x],
and since f(x) is irreducible, it is only possible if f ′(x) ≡ 0. This implies
that charK = p and f(x) = g(xp) for some polynomial g(x). �

DEFINITION 4.1.3. An algebraic extension F/K is called separable if any α ∈
F is separable over K.

THEOREM 4.1.4. Let F/K be an algebraic extension. Suppose that F is generated
over K by elements αi, i ∈ I . Then the following conditions are equivalent:

(1) F/K is separable.
(2) αi is separable for any i ∈ I .

If, in addition, F/K is finite then this is equivalent to
(3) The number of different embeddings F → K̄ over K is equal to [F : K],

the maximum possible number.

Proof. (1) obviously implies (2). Next we assume that F/K is finite and
show that (2) implies (3). In this case F is generated by finitely many αi’s,
so we can assume that I = {1, . . . , r} is a finite set. Then we have the tower

K = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fr = F,

where Fk = K(α1, . . . , αk). Each αk is separable over K and hence sep-
arable over Fk−1. We have Fk = Fk−1(αk), and therefore the number of
different embeddings of Fk in K̄ over Fk−1 is equal to [Fk : Fk−1]. But any
homomorphism F → K̄ can be constructed step-by-step by extending the
inclusion K ⊂ K̄ to fields Fk in the tower. It follows that the number of
different embeddings F → K̄ over K is equal to

[F : Fr−1][Fr−1 : Fr−2] . . . [F1 : K] = [F : K].

Moreover, the same reasoning shows that this is the maximum possible
number of embeddings.

Now we show that (3) implies (1) (still assuming that F/K is finite).
Suppose that α ∈ F is not separable. Then the number of embeddings
K(α) → K̄ is strictly less then [K(α) : K], and considering the tower
K ⊂ K(α) ⊂ F gives the contradiction. Indeed, by the above, the num-
ber of different embeddings F → K̄ over K(α) is at most [F : K(α)].

Finally, we show that (2) implies (1) in general. Take α ∈ F . Then
α ∈ K(α1, . . . , αk) for a finite subset of generators. Since K(α1, . . . , αk)
is finite over K, the finite extension case considered above shows that α is
separable. �
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The following theorem is a nice bonus feature of separable extensions.

THEOREM 4.1.5 (Theorem on the Primitive Element). If F/K is a finite sepa-
rable extension then F = K(γ) for some γ ∈ F .

REMARK 4.1.6. The philosophy is that (as we will see later) F contains only
finitely many intermediate subfields K ⊂ L ⊂ F . Then F is a finite-
dimensional K-vector space, and (if K is an infinite field) we can take γ
to be any vector not in the union of these proper subfields L (which forms
a finite collection of vector subspaces of smaller dimension). For example,
the field extension Q ⊂ Q(

√
2,
√

3) contains only three intermediate sub-
fields, namely Q(

√
2), Q(

√
3), Q(

√
6). So Q(

√
2,
√

3) is generated by any
element not in this union. With a little effort one can show that in fact
Q(
√

2,
√

3) = Q(
√

2 +
√

3). However, in general it is easier to give an ad hoc
argument by a trick. This trick is actually very useful (see for example the
proof of Noether’s normalization theorem).

Proof. If K is a finite field then F is also finite and we can take γ to be any
generator of F ∗. Suppose now thatK is infinite. We can argue by induction
on the number of generators of F overK and reduce to the following state-
ment: if F = K(α, β) then we can find γ = β+ cα for some c ∈ K such that
K(α, β) = K(γ). Since β = γ − cα, it is enough to show that K(α) ⊂ K(γ)
for some c ∈ K.

Let f(x) (resp. g(x)) be the minimal polynomial of α (resp. β). Since
F/K is separable, their roots α = α1, . . . , αr and β = β1, . . . , βs (in K̄) are
not multiple.

Consider the polynomials

f(x), h(x) := g(γ − cx) ∈ K(γ)[x]

Clearly α is their common root. If αi, i ≥ 2 is another common root then
γ − cαi = βj for some j. It follows that

β + cα = βj + cαi,

and therefore

c =
βj − β
α− αi

.

There are only finitely many choice for the RHS of this equation. So it is
possible to choose a different c. Then α is the only common root of f(x)
and h(x). Since f(x) has no multiple roots, the g.c.d. of f(x) and h(x) is
equal to x− α. It follows that x− α ∈ k(γ)[x]. It follows that α ∈ k(γ). �

§4.2. Normal Extensions.

DEFINITION 4.2.1. An algebraic extension F/K is called normal if the mini-
mal polynomial of any α ∈ F splits in F [x] in the product of linear factors.

THEOREM 4.2.2. Let F/K be algebraic and suppose that F Suppose that is gen-
erated over K by elements αi, i ∈ I . Then the following conditions are equivalent:

(1) F/K is normal.
(2) F is the splitting field of the collection of minimal polynomials of αi.
(3) Any embedding F → K̄ over K has image F .
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Proof. It is obvious that (1) implies (2). Let σ : F → K̄ be any homomor-
phism over K. Then σ(αi) is a root of the minimal polynomial of αi for
any i. It follows that σ(αi) ∈ F for any αi. Therefore σ(F ) ⊂ F . We claim
that in fact σ(F ) = F . This is clear if F/K is finite. But even if it is not finite,
any α ∈ F is contained in the splitting field F ′ of finitely many of αi’s. The
argument above shows that σ(F ′) = F ′, and therefore any α ∈ F is in the
image of σ.

Finally, we show that (3) impies (1). Suppose not. Then there exists
α ∈ F such that its minimal polynomial does not split in F . Then there
exists an embedding K(α) → K̄ with image not contained in F (just send
α to a root of the minimal polynomial not contained in F ). This embedding
can be extended to an embedding σ : F → K̄ with σ(F ) 6⊂ K̄. �

§4.3. Main Theorem of Galois Theory. We say that K ⊂ F is a Galois
extension if it is separable and normal.

THEOREM 4.3.1. Let K ⊂ F be a finite Galois extension with a Galois group
G = Gal(F/K). Then |G| = [F : K] and there is an inclusion-reversing bijection

{subgroups H ⊂ G} ↔ {towers K ⊂ L ⊂ F}

Namely, a subgroup H corresponds to its fixed subfield

L = FH = {α ∈ F |h(α) = α for any h ∈ H}

and a tower K ⊂ L ⊂ F corresponds to a subgroup

H = Gal(F/L) ⊂ Gal(F/K) = G.

Proof. Since F/K is separable, the number of homomorphisms F → K̄
over K is equal to [F : K]. Since F/K is normal, the image of any such
homomorphism is equal to F . Therefore, |G| = [F : K].

Next we show that FG = K. Indeed, FG is clearly a field and we have

K ⊂ FG ⊂ F.

Since F/FG is a Galois extension, we have |Gal(F/FG)| = [F : FG] by the
above. But Gal(F/FG) = Gal(F/K) = G. Therefore, [F : FG] = [F : K]
and so FG = K.

Now takeK ⊂ L ⊂ F . We map it to a subgroupH = Gal(F/L). We have
proved in the previous step (applied to the extension L ⊂ F ) that FH = L.
It follows that the map

{K ⊂ L ⊂ F} → {H ⊂ G}

is one-to-one.
It remains to show that this map is onto and that Gal(F/FH) = H for

any subgroupH ⊂ G. This follows from a more general Lemma below. �

LEMMA 4.3.2. Let F be any field and let G be a finite group of its automorphisms.
Then F/FG is a finite Galois extension with Galois group G.

Proof. Let α ∈ F and consider its G-orbit

G · α = {α1, . . . , αr} with α = α1.
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Consider the polynomial

f(x) =
r∏
i=1

(x− αr).

By Vieta formulas, its coefficients are elementary symmetric functions in
α1, . . . , αr. Therefore, these coefficients are G-invariant, i.e. f(x) ∈ FG[x].
Since the minimal polynomial of α over FG divides f(x), α is separable
over FG. Therefore F/FG is separable. Since all roots of the minimal poly-
nomial of α are among {α1, . . . , αr}, we see that F/FG is normal as well.
Therefore, F/FG is Galois. Clearly, G ⊂ Gal(F/FG). To prove the equality,
it suffices to show that [F : FG] ≤ |G|.

By the primitive element theorem, F = FG(α) for some α. By the anal-
ysis above, the minimal polynomial of α has degree at most |G|, and there-
fore [F : FG] = [FG(α) : FG] ≤ |G|. �

COROLLARY 4.3.3. Let H ⊂ G and let L = FH be the corresponding subfield.
Then H is a normal subgroup of G if and only if L/K is a normal field extension.
In this case Gal(L/K) ' G/H .

Proof. Suppose L/K is a normal extension. Then any automorphism of F
over K preserves L, i.e. we have a “restriction” homomorphism

Gal(F/K)→ Gal(L/K)

and its kernel is obviously Gal(F/L). The restriction homomorphism is
onto because any automorphism of L/K can be lifted to an automorphism
of F/K.

In the other direction, suppose L/K is not a normal extension. Then
there exists g ∈ G such that gL 6= L. It is easy to check that gHg−1 is a
Galois group of F/gL. Since gL 6= L, it follows by the main theorem that
H 6= gHg−1, i.e. H is not normal. �

REMARK 4.3.4. A simple fact that we will exploit a lot is that the Galois
group Gal(F/K) of a finite Galois extension F/K is isomorphic to a sub-
group of Sn, where n = [F : K]. For example, by the primitive element
theorem, F = K(α) for some α ∈ F . Then F is a splitting field of the min-
imal polynomial f(x) of α, and Gal(F/K) permutes n roots of f(x). This
gives an embedding Gal(F/K) ↪→ Sn.

EXAMPLE 4.3.5. Let’s completely analyze the field extension

Q ⊂ Q(
√

2,
√

3).

We have an intermediate subfield Q(
√

2) of degree 2 over Q and it is ele-
mentary to check that

√
3 is not contained in this subfield. It follows that

Q(
√

2,
√

3) has degree 4 over Q and is a splitting field of the polynomial
(x2 − 2)(x2 − 3). In particular, this extension is Galois. Let G be the Galois
group. Then

|G| = [Q(
√

2,
√

3) : Q] = 4
and G permutes roots of (x2 − 2)(x2 − 3). But not in an arbitrary way: G
can only permute roots of x2 − 2 (resp. x2 − 3). So we see that

G ' Z2 × Z2.
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It sends
√

2 to ±
√

2 and
√

3 to ±
√

3. The group G contains three proper
subgroups: H1 fixes

√
2, H2 fixes

√
3, and H3 can only change the sign of√

2 and
√

3 simultaneously. Then H3 fixes
√

6 =
√

2
√

3. So there are 3
intermediate subfields: Q(

√
2), Q(

√
3), and Q(

√
6).

Take an element
√

2+
√

3. Let f(x) be its minimal polynomial. The Galois
group G permutes the roots of f(x). So these roots must be ±

√
2 ±
√

3. In
particular, f(x) has degree 4, and therefore

√
2 +
√

3 is a primitive element:

Q(
√

2,
√

3) = Q(
√

2 +
√

3).

EXAMPLE 4.3.6. Whenever a group G acts on a field K, we say that KG

is the field of invariants of G. For example, consider the action of the
symmetric group Sn on the field of rational functions K = k(x1, . . . , xn).
By Lemma 4.3.2, K/KSn is a Galois extension with a Galois group Sn. It is
clear that KSn contains elementary symmetric functions

σ1 =
∑
i

xi, σ2 =
∑
i<j

xixj , . . . , σn =
∏
i

xi.

So KG ⊃ k(σ1, . . . , σn). By the Vieta theorem, k(x1, . . . , xn) is a splitting
field over k(σ1, . . . , σn) of the polynomial

(x− x1) . . . (x− xn) = xn − σ1x
n−1 + . . .+ (−1)nσn

without multiple roots. It follows that k(x1, . . . , xn)/k(σ1, . . . , σn) is a Ga-
lois extension. Let G be its Galois group. Since G acts faithfully on the
set of roots of the polynomial above, we have |G| < n!. Therefore, KG =
k(σ1, . . . , σn).

§4.4. Exercises.
In this set we fix a finite field extension K ⊂ F . Let K̄ be an algebraic

closure of K.
1. Let α ∈ F and let f(x) be its minimal polynomial. Suppose that α is
not separable over K. (a) Show that charK = p and f(x) = g(xp) for some
polynomial g ∈ K[x]. (b) Show that there exists k ≥ 1 such that all roots of
f(x) in K̄ have multiplicity pk and αp

k
is separable over K.

2. (a) Show that elements of F separable over K form a field L. We define

[F : K]s := [L : K].

(b) Prove that the number of different inclusions of F in the algebraic clo-
sure of K over K is equal to [F : K]s.
3. Show that [F : K]s = 1 if and only if charK = p and F is generated
over K by elements α1, . . . , αr such that the minimal polynomial of each αi
has the form xp

ki − ai for some ai ∈ K and a positive integer ki.
4. Show that the primitive element theorem does not necessarily hold for
finite extensions that are not separable.
5. A field k is called perfect if either char k = 0 or char k = p and the
Frobenius homomorphism F : k → k is an isomorphism. Show that if k is
perfect then any algebraic extension of k is separable over k and perfect.
6. Let ABC be an isosceles triangle with AB = BC. Let AD be a bisector
of the angle BAC. Suppose that (a) AD+BD = AC or (b) BD = AC. Find
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the angle measure of the angle BAC in degrees. (Hint: You can either use
high school geometry (but the solution will be tricky) or algebra, in which
case the Law of Sines could be helpful.)
7. Let F be a splitting field of the polynomial f ∈ K[x] of degree n. Show
that [F : K] divides n! (do not assume that F is separable over K).
8. Show that any element in a finite field is a sum of two squares in that
field.
9. Let F ⊂ K̄ be a finite Galois extension of K and let L ⊂ K̄ be any finite
extension of K. Consider the natural K-linear map L⊗K F → K̄. (a) Show
that its image is a field, that we will denote by LF . (b) Show that LF is
Galois over L. (c) Show that Gal(LF/L) is isomorphic to Gal(F/L ∩ F ).
10. Find the minimal polynomial over Q of 2

√
3 + 3
√

3. Compute the Galois
group of its splitting field.
11. Let a, b ∈ K and suppose that f(x) = x3 + ax+ b has no roots in K. Let
F be a splitting field of f(x). Assume that charK 6= 3. Show that

Gal(F/K) '

{
S3 if −4a3 − 27b2 is not a square in K

Z3 if −4a3 − 27b2 is a square in K

12. Let f(x) ∈ Q[x] be an irreducible polynomial of prime degree p. Sup-
pose that f(x) has exactly p − 2 real roots. Show that the Galois group of
the splitting field of f(x) is Sp.
13. For any d ≥ 2, prove existence of an irreducible polynomial in Q[x] of
degree d with exactly d − 2 real roots (Hint: take some obvious reducible
polynomial with exactly d− 2 real roots and perturb it a little bit to make it
irreducible).
14. Let G be any finite group. Show that there exist finite extensions Q ⊂
K ⊂ F such that F/K is a Galois extension with a Galois group G.
15. Let F be a splitting field of the polynomial f(x) ∈ K[x]. Show that
GalF/K acts transitively on roots of f(x) if and only if f(x) is irreducible
(do not assume that f(x) is separable).
16. Let F be a splitting field of a biquadratic polynomial x4+ax2+b ∈ K[x].
Show that Gal(F/K) is isomorphic to a subgroup of D4.

§5. APPLICATIONS OF GALOIS THEORY - I

§5.1. Fundamental Theorem of Algebra.

THEOREM 5.1.1. C is algebraically closed.

Proof. Since we are in char = 0, all field extensions are separable. It suffices
to show that any finite Galois extensionK of R is equal to R or to C (why?).
We argue by induction on [K : R]. If [K : R] = 1 then K = R and there is
nothing to prove. Suppose that [K : R] > 1.

Let G be a Galois group of K/R. Let H ⊂ G be its 2-Sylow subgroup.
Then [KH : R] = [G : H] is odd. Let α ∈ KH . Then the minimal polynomial
of α in R[x] has odd degree. But any odd degree polynomial in R[x] has a
root (this is the only place where we use analysis). Therefore KH = R,
i.e. G = H is a 2-group.
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Any p-group has a non-trivial center. Let Γ ⊂ Z(G) be a subgroup of
order 2. Then Γ is normal in G. Therefore, KΓ/R is Galois. By inductive
assumption, KΓ is equal to R or to C.

Finally, K/KΓ is a quadratic extension. By the quadratic formula, any
quadratic polynomial in C[x] splits and any quadratic polynomial in R[x]
has a complex root. Therefore, KΓ = R and K = C. �

§5.2. Galois group of a finite field.

THEOREM 5.2.1. The Galois group Gal(Fpn/Fp) ' Zn. It is generated by the
Frobenius map F (x) = xp. Intermediate subfields Fp ⊂ L ⊂ Fpn correspond to
divisors k of n. We have L ' Fpk and L = (Fpn)F

k
= {α ∈ Fpn |αpk

= α}.

Proof. Since [Fpn : Fp] = n, the Galois group G has order n. G contains F .
If F has order d then αp

d
= α for any α ∈ Fpn . A polynomial can not

have more roots than its degree, therefore d = n and G ' Zn. Notice that
subgroups H ⊂ G correspond to divisors k|n. Namely, H is generated
by F k. The remaining statements follow from the main theorem of Galois
theory. �

§5.3. Cyclotomic fields. Let φ(n) = |Z∗n| be the Euler function, i.e. the num-
ber of elements in Zn coprime to n.

PROPOSITION 5.3.1. Suppose n is coprime to char k. Let K/k be the splitting
field of xn − 1 (in which case we say that K is obtained from k by adjoining n-
th roots of unity). Then [K : k] divides φ(n) and Gal(K/k) is isomorphic to a
subgroup of (Z/nZ)∗

Proof. Let µn ⊂ K be the solutions of xn − 1 = 0. Notice that µn is cyclic
(as any finite subgroup in the multiplicative group of a field) and has or-
der n (because xn − 1 is separable). Let G = Gal(K/k). Notice that G acts
faithfully on µn by automorphisms. So G is isomorphic to a subgroup of
Aut(µn), which has φ(n) elements. So |G| divides φ(n). �

DEFINITION 5.3.2. Let ζn = e2πi/n ∈ C. Since any n-th root of 1 is a power
of ζn, the splitting field of xn − 1 is equal to Q(ζn). This field is called the
cyclotomic field (Etymology: cyclotomy is the process of dividing the circle
into equal parts, from cycl- + -tomy).

THEOREM 5.3.3. Let ζ = ζn. The cyclotomic field Q(ζ) has degree φ(n) over Q.
The Galois group of Q(ζ)/Q is equal to Z∗n. The minimal polynomial of ζ is

Φn(x) =
∏

0<k<n
(k,n)=1

(x− ζk)

(the cyclotomic polynomial). We have xn − 1 =
∏
d|n

Φd.

Proof. Let f(x) be the minimal polynomial of ζ. We already know that
deg f divides φ(n) and that Gal(Q(ζ)/Q) is a subgroup of Z∗n. We claim
that f(ζk) = 0 whenever (k, n) = 1. This will show that f(x) = Φn(x),
[Q(ζ) : Q] = φ(n), and Gal(Q(ζ)/Q) = Z∗n.
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Arguing by induction on k, it suffices to show that f(ζp) = 0 if p is prime
and does not divide n. Arguing by contradiction, suppose that f(ζp) 6= 0.
Let

xn − 1 = f(x)g(x).
Then g(ζp) = 0. It follows that ζ is a root of g(xp). Therefore, we have

g(xp) = f(x)h(x). (10)

By Gauss lemma, polynomials f(x), g(x), and g(x) have integer coeffi-
cients (and are monic). So we can reduce (10) modulo p:

g(x)p ≡ g(xp) ≡ f(x)h(x) mod p

Let f̄(x) and ḡ(x) be polynomials in Zp[x] obtained by reducing f(x) and
g(x) modulo p. Then f̄(x) divides ḡ(x)p, and therefore f̄(x) and ḡ(x) are not
coprime. Therefore, xn − 1 = f̄(x)ḡ(x) has a multiple root in some finite
field containing Fp. But since (p, n) = 1, (nxn−1, xn − 1) = 1, and therefore
xn − 1 has no multiple roots. �

§5.4. Kronecker–Weber Theorem. The role played by cyclotomic fields can
be appreciated for the following theorem (proved by Kronecker and Weber)

THEOREM 5.4.1. Any Galois extension K/Q with an Abelian Galois group is
contained in some cyclotomic field Q(ζn).

This remarkable theorem is very difficult, and attempts to generalize it
to Abelian extensions of fields of algebraic numbers led to the development
of Class Field Theory (and to modern Langlands program). Let’s just prove
the easiest case, first observed by Gauss:

THEOREM 5.4.2. Any quadratic extension K/Q is contained in some Q(ζn).

Proof. Any quadratic extension of Q has the form Q(
√
n), where n is a

square-free integer. Let n = p1 . . . pr be a prime decomposition.
Notice that ζl ∈ Q(ζm) if l|m. It follows that if

√
pi ∈ Q(ζli) for any i then√

n ∈ Q(ζl1...lr). So it suffices to prove that
√
p is contained in a cyclotomic

field when p is a prime.
The case p = 2 is easy (

√
2 = eπi/4 + e−πi/4). We assume that p is odd.

For any ν ∈ F∗p, let (νp ) be the quadratic (or Legendre) symbol. It is equal to 1
if ν is a square in Fp and −1 otherwise. It is multiplicative (why?):(

ν

p

)(
ν ′

p

)
=
(
νν ′

p

)
.

Let ζ = ζp and consider the Gauss sum

S =
∑
ν∈F∗p

(
ν

p

)
ζν .

We claim (after Gauss) that

S2 =
(
−1
p

)
p

and therefore
√
p ∈ Q(ζp) if (−1

p ) = 1 and i
√
p ∈ Q(ζp) if (−1

p ) = −1. In the
latter case

√
p ∈ Q(ζ4p) (because i ∈ Q(ζ4)).
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This is a fun calculation with a neat trick:

S2 =
∑
ν,µ∈F∗p

(
ν

p

)(
µ

p

)
ζν+µ =

∑
ν,µ∈F∗p

(
νµ

p

)
ζν+µ =

the trick is to replace ν with νν for any fixed µ, which gives

=
∑
ν,µ∈F∗p

(
νµ2

p

)
ζνµ+µ =

∑
ν,µ∈F∗p

(
ν

p

)
ζµ(ν+1) =

∑
µ∈F∗p

(
−1
p

)
ζ0 +

∑
ν 6=−1

(
ν

p

) ∑
µ∈F∗p

ζµ(ν+1) =

It is easy to see that
∑

µ∈Fp
(ζν+1)µ = 0 (why?)

=
(
−1
p

)
(p− 1)−

∑
ν 6=−1

(
ν

p

)
= p

(
−1
p

)
,

because
∑
ν∈Fp

(
ν
p

)
= 0 (why?) �

The most famous fact about quadratic symbols is the reciprocity law

THEOREM 5.4.3 (Gauss’ Theorema Aureum).(
p

q

)(
q

p

)
= (−1)

p−1
2 (−1)

q−1
2 ,

where p and q are odd primes.

Proof. It is straightforward to check (see Exercise 2) that(
p

q

)
≡ p

q−1
2 mod q.

In the previous proof we have obtained the identity

S2 = p

(
−1
p

)
= (−1)

p−1
2 p,

where S is the Gauss sum (see Exercise 2 for the last equality). So we have

Sq−1 = (−1)
p−1
2

q−1
2 p

q−1
2 ≡ (−1)

p−1
2

q−1
2

(
p

q

)
mod q,

where we work in the ring Z[ζp]. So “a ≡ b mod q” means “a − b ∈ (q)”.
On the other hand,

Sq ≡
∑
ν∈F∗p

(
ν

p

)q
ζνq (Frobenius!)

≡
∑
ν∈F∗p

(
ν

p

)
ζνq ≡

∑
ν∈F∗p

(
νq

p

)(
q

p

)
ζνq ≡

≡
(
q

p

)
S mod q.



48 JENIA TEVELEV

We can combine two formulas for Sq to get the quadratic reciprocity law,
but we have to be slightly careful because we are doing calculations in Z[ζp]
rather than in Z. We can finish as follows. We have proved that

(−1)
p−1
2

q−1
2

(
p

q

)
S ≡

(
q

p

)
S mod q

This implies

(−1)
p−1
2

q−1
2

(
p

q

)
S2 ≡

(
q

p

)
S2 mod q.

But S2 = ±p, so this congruence is a congruence in Z, and since (p, q) = 1,
we can cancel S2. This finally gives

(−1)
p−1
2

q−1
2

(
p

q

)
=
(
q

p

)
.

QED �

§5.5. Cyclic Extensions. As we know, any quadratic extension F/K can
be obtained by simply adding a quadratic root (of the discriminant) F =
K(
√
D). It turns out that a very similar description is available for any

Galois extension with a cyclic Galois group:

THEOREM 5.5.1. Suppose thatK contains all n-th roots of 1 and that charK does
not divide n.

• Let α be a root of xn − a for some a ∈ K. Then K(α)/K is Galois, and
the Galois group is cyclic of order d, where d|n and αd ∈ K.
• If F/K is a Galois extension with a cyclic Galois group of order n then
F = K(α) for some α ∈ F such that αn ∈ K.

Proof. Let ζ ∈ K be a primitive n-th root of 1.
One direction is easy: Let α be a root of xn− a for some a ∈ K. Then ζkα

is also a root for any 1 ≤ k ≤ n − 1. It follows that xn − a splits in K(α).
Since all the roots are distinct, we see that K(α)/K is Galois. Let G be the
Galois group. For any g ∈ G, we have gα = ζkα for some k ∈ Z/nZ. It is
easy to see that this gives an injective homomorphism

G→ Z/nZ, g 7→ k

Therefore, G is cyclic of order d|n. Let σ be a generator. Then σ(α) = να,
where νd = 1. We have

σ(αd) = [σ(α)]d = νdαd = αd.

It follows that αd ∈ K.
Now a less trivial implication: Let F/K be a Galois extension with a

cyclic Galois group G of order n. Let σ be a generator of the Galois group.
It suffices to prove the following:

CLAIM 5.5.2. There exists α ∈ F ∗ such that σ(α) = ζα.

Indeed, given the Claim, and since the Galois group acts transitively on
roots of the minimal polynomial of α, we see that the minimal polynomial
of α is equal to

f(x) = (x− α)(x− ζα) . . . (x− ζn−1α).
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In particular, [K(α) : K] = n, and therefore K(α) = F . Finally,

σ(αn) = ζnαn = αn,

and therefore αn = a ∈ K (it also follows that f(x) = xn − a).
Next we prove the Claim. Since σn = Id, the minimal polynomial of σ

(as a K-linear operator) divides λn − 1. It follows that all eigenvalues of σ
are n-th roots of unity. Since

F σ = {α ∈ F |σ(α) = α} = K

by the main theorem of Galois Theory, σ has an eigenvector α with an
eigenvalue λ 6= 1, λn = 1. If n is prime, λ is automatically a primitive
n-th root of unity, and we can stop here. But if n is not prime, λ is not
necessarily primitive, this argument needs a further analysis.

We will give another proof, which utilizes a useful formula discovered
by Lagrange. It is now called a Lagrange resolvent.

Consider the following K-linear operator on F :

A = Id +ζ−1σ + . . .+ ζ−(n−1)σn−1.

By Lemma 5.5.3 below, this operator is not identically 0. Let β ∈ F be any
element such that α := A(β) 6= 0. Then

α = β + ζ−1σ(β) + . . .+ ζ−(n−2)σn−2(β) + ζ−(n−1)σn−1(β) (11)

and

σ(α) = σ(β) + ζ−1σ2(β) + . . .+ ζ−(n−2)σn−1(β) + ζ−(n−1)σn(β) =

= ζβ + σ(β) + ζ−1σ2(β) + . . .+ ζ−(n−2)σn−1(β) = ζα.

We are done! �

LEMMA 5.5.3 (Artin). Let F be a field and let σ1, . . . , σr be different automor-
phisms of F . Then they are linearly independent overK: if α1σ1 + . . .+αrσr = 0
as a K-linear operator F → F for some α1, . . . , αr ∈ F then α1 = . . . = αr = 0.

In fact, more is true: let F be a field, let Γ be a group, and let σi : Γ → F ∗ for
i ∈ I be different homomorphisms (so called characters). Then they are linearly
independent over K: if α1σ1 + . . . + αrσr = 0 as a function Γ → F for some
α1, . . . , αr ∈ F then α1 = . . . = αr = 0.

Proof. The first part follows from the second: just take Γ = F ∗ (any auto-
morphism obviously induces a multiplicative homomorphism F ∗ → F ∗).

To prove the second part, suppose we have a relation

α1σ1 + . . .+ αrσr = 0.

We can assume that r is the minimal possible. Then r ≥ 2 and αi 6= 0 for
any i. Since σ1, σ2 are different, there exists z ∈ Γ such that σ1(z) 6= σ2(z).
Then we have

α1σ1(xz) + . . .+ αrσr(xz) = 0

for any x ∈ G, and therefore

α1σ1(z)σ1 + . . .+ αrσr(z)σr = 0
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is another linear relation on our homomorphisms. Divide by σ1(z), and
subtract from the first relation. This gives(

α2
σ2(z)
σ1(z)

− α2

)
σ2 + . . . = 0.

This is a non-trivial relation of a smaller length, a contradiction. �

§5.6. Composition Series and Solvable Groups. We would like to under-
stand Galois extensions with solvable Galois groups (which was the main
contribution of Galois to Galois theory). Let us use this opportunity and
make a digression into group theory and discuss composition series. These
results are very general and the arguments rely only on the first and the
second isomorphism theorem. So they hold not just for groups but also for
R-modules, Lie algebras, etc.

DEFINITION 5.6.1. A group G is called simple if it is not trivial, and has no
normal subgroups other than {e} and G itself.

EXAMPLE 5.6.2. Z/pZ for prime p, An for n ≥ 5.

DEFINITION 5.6.3. Let G be a group. A sequence of subgroups

G = G1 ⊃ G2 ⊃ G3 ⊃ . . . ⊃ Gr = {e} (5)

is called a tower (or a series or a filtration). A refinement of (5) is a tower
obtained by inserting a finite number of subgroups in the given tower.

The tower is called normal if eachGi+1 is normal inGi. A normal tower (5)
is called composition series if each quotientGi/Gi+1 (called composition factor)
is a simple group.

The tower is called Abelian (resp. cyclic) if it is normal and each quotient
Gi/Gi+1 is Abelian (resp. cyclic).

A group G is called solvable if it has an Abelian tower.

Here are some simple facts:

LEMMA 5.6.4. A normal tower of a finite group can be refined to composition
series. An Abelian tower (5) of a finite solvable group can be refined to a cyclic
tower such that its subsequent quotients are simple cyclic groups Z/pZ (for various
prime p).

Proof. Take a normal tower (5) of G and assume that this tower is Abelian
if G is solvable. If one of the quotients Gi/Gi+1 is not simple (i.e. is not
isomorphic to Z/pZ in the solvable case) then let H ⊂ Gi/Gi+1 be a proper
normal subgroup. We refine the tower as follows:

Gi ⊃ p−1(H) ⊃ Gi+1,

where p : Gi → Gi/Gi+1 is the quotient map. This refinement procedure
must stop after at most log2 |G| steps. �

LEMMA 5.6.5. Any finite p-group G is solvable.

Proof. Induction on G. A basic fact about finite p-groups is that their center
Z(G) is not-trivial. We have a normal tower

G ⊃ Z(G) ⊃ {e}.
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The quotient group G/Z(G) is a p-group of smaller size, so by induction
it has an Abelian tower. Pulling back this tower to G gives an Abelian
refinement of the inclusion G ⊃ Z(G). �

LEMMA 5.6.6. A subgroup H of a solvable group G is solvable.

Proof. Take an Abelian tower of (5). It induces the tower

H = H1 = H ∩G1 ⊃ H2 = H ∩G2 ⊃ . . . ⊃ Hr = H ∩Gr.
Since Gi+1 is normal in Gi, Hi+1 = Gi+1 ∩H is normal in Hi = Gi ∩H . The
inclusion Hi ⊂ Gi induces the inclusion Hi/Hi+1 ⊂ Gi/Gi+1. Therefore
Hi/Hi+1 is Abelian. �

DEFINITION 5.6.7. Two normal towers of the same group, say (5) and

G = H1 ⊃ H2 ⊃ H3 ⊃ . . . ⊃ Hs = {e} (6)

are called equivalent if r = s and the sequence of consequent quotients

G1/G2, G2/G3, . . . , Gr−1/Gr = Gr−1

can be rearranged so that they are respectively isomorphic to

H1/H2, H2/H3, . . . , Hs−1/Hs = Hs−1.

Here is a first surpise: a very useful theorem of Jordan and Hölder.

THEOREM 5.6.8. Any two composition series of a group G are equivalent.

Since the composition series is a tower that cannot be refined, the Jordan–
Hölder theorem obviously follows from the following even more general
theorem of Schreier:

THEOREM 5.6.9. Any two normal towers of G have equivalent refinements.

Proof. Let the two towers (5) and (6) be given. For each i = 1, . . . , r− 1 and
j = 1, . . . , s we define

Gij = Gi+1(Hj ∩Gi).
Notice that since Gi+1 is normal in Gi, Gij is a subgroup of Gi and we can
refine our tower by inserting blocks

Gi = Gi1 ⊃ Gi2 ⊃ . . . ⊃ Gis = Gi+1.

Similarly, we can define

Hji = Hj+1(Gi ∩Hj)

for j = 1, . . . , s − 1 and i = 1, . . . , r. This gives a refinement of the first
tower. Both refined towers have (r−1)(s−1)+1 elements, namelyGij and
{e} in the first case and Hji and {e} in the second case, where the range
for indices is i = 1, . . . , r − 1, j = 1, . . . , s − 1. We claim that these two
towers are equivalent, and more precisely, the quotients of Gij and Hji are
isomorphic. This is the content of the next lemma. �

LEMMA 5.6.10 (Zassenhaus Lemma, or Butterfly Lemma). Let U, V be sub-
groups of a group G. Let u, v be normal subgroups of U , V , respectively. Then
u(U ∩v) is normal in u(U ∩V ), (u∩V )v is normal in (U ∩V )v, and the quotient
groups are isomorphic.
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Proof. Subgroups appearing in the proof form a butterfly (reproduced from
Lang’s Algebra). We are not going to use this in the proof, but playing with
this diagram will convince you that whenever two groups are connected by
a segment to a point lying right above, this point represents their product,
and whenever the point lies right below, it represents their intersection.

The main claim is that quotient groups formed along the three central
vertical lines are all isomorphic.

Since U ∩ V normalizes u, we see that u(U ∩ V ) is a subgroup.
Set H = U ∩ V and N = u(U ∩ v). Then H normalizes N and by the

second isomorphism theorem for groups we have

HN/N ' H/H ∩N.
A small calculation shows that

H ∩N = U ∩ V ∩
(
u(U ∩ v)

)
= (u ∩ V )(U ∩ v)

and
HN = (U ∩ V )u(U ∩ v) = (U ∩ V )u = u(U ∩ V ).

This gives(
u(U ∩ V )

)
/
(
u(U ∩ v)

)
' (U ∩ V )/

(
(u ∩ V )(U ∩ v)

)
.

The lemma follows from symmetry between U and V . �

§5.7. Exercises.
1. Let p1, . . . , pr ∈ Z be distinct primes and let K = Q(

√
p1, . . . ,

√
pr).

(a) Compute the Galois group Gal(K/Q). (b) Describe explicitly all inter-
mediate subfields L such that either [L : Q] = 2 or [K : L] = 2. (c) Describe
explicitly all intermediate subfields when r = 4.
2. Let q be an odd prime and let a be an integer coprime to q. Show that the
quadratic symbol (aq ) is equal to a

q−1
2 modulo q.

3. Consider a tower K ⊂ L ⊂ F . Suppose L/K and F/L are finite Galois
extensions. Is it true that F/K is Galois?

4. Let αr =

√
2 +

√
2 +

√
2 + . . .+

√
2 (r radicals). (a) Show that the mini-

mal polynomial fr(x) ∈ Q[x] of αr can be computed inductively as follows:
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fr(x) = fr−1(x2 − 2), where f1(x) = x2 − 2. Describe all roots of fr(x).
(b) Show that Q(α2)/Q is a Galois extension with a Galois group Z4.

5. Let K ⊂ L ⊂ K̄ and suppose that L/K is separable. Show that there
exists the unique minimal (by inclusion) Galois extension F/K such that
L ⊂ F ⊂ K̄. Show that if L/K is finite then F/K is finite.

6. (a) Let K̄ be an algebraic closure of K. Show that there exists the unique
maximal (by inclusion) subfield K ⊂ Kab ⊂ K̄ such that Kab/K is Ga-
lois and the Galois group Gal(Kab/K) is Abelian. (b) Deduce from the
Kronecker-Weber Theorem that

Qab =
⋃
n≥1

Q(ζn).

7. Let F/K be a finite Galois extension with a Galois group G. Let H ⊂ G
be a subgroup and let L = FH . Show that the number of fields of the form
g(L) for g ∈ G is equal to |G|

|NG(H)| .

8. Let F/K be a finite Galois extension with a Galois group G. Let H ⊂ G
be a subgroup and let L = FH . LetN =

⋂
g∈G

gHg−1. Prove thatN is normal

in G and characterize the field FN in terms of the tower K ⊂ L ⊂ F .

9. Let F/K be a splitting field of a polynomial f(x) = (x− ai) . . . (x− ar) ∈
K[x] without multiple roots. Let

∆ =
∏

1≤i<j≤n
(ai − aj)2

be the discriminant of f(x). (a) Show that ∆ ∈ K. (b) Let G ⊂ Sn be the
Galois group of F/K acting on roots of f(x). Show that G ⊂ An if and only
if ∆ is a square in K.

10. Let F = C(x1, . . . , xn) be the field of rational functions in n variables.
(a) Suppose An acts on F by even permutations of variables. Show that
FAn is generated over C by elementary symmetric functions σ1, . . . , σn in
variables x1, . . . , xn and by

∏
1≤i<j≤n

(xi−xj). (b) Suppose n = 4 and suppose

D4 acts on F by permutations of variables (here we identify variables with
vertices of the square). Show that FD4 is generated over C by 4 functions
and find them.

11. Let G be a finite Abelian group. (a) Show that there exists a positive
integer n and a subgroup Γ ⊂ Z∗n such that G ' Z∗n/Γ. (b) Show that there
exists a Galois extension K/Q with a Galois group G. (It is a famous open
problem to remove an Abelian assumption from this exercise).

12. Compute the Galois group of the polynomial (a) x3−x−1 over Q(
√
−23);

(b) x3 − 2tx+ t over C(t) (the field of rational functions in one variable).

13. Compute the Galois group of the polynomial x4 − 4x2 − 1 over Q.

14. Suppose f(x) ∈ Q[x] is an irreducible polynomial such that one of its
complex roots has absolute value 1. Show that f(x) has even degree and is
palindromic: if f(x) = a0 + a1x+ . . .+ anx

n then a0 = an, a1 = an−1, etc.
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15. Let Φn(x) be the n-th cyclotomic polynomial, a a non-zero integer, p a
prime. Assume that p does not divide n. Prove that p|Φn(a) if and only if a
has order n in (Z/pZ)∗.
16. LetK = C[z−1, z]] be the field of Laurent series (series in z, polynomials
in z−1). Let Km = C[z

−1
m , z

1
m ]] ⊃ K. (a) Show that Km/K is Galois with a

Galois group Z/mZ. (b) Show that any Galois extension F/K with a Galois
group Z/mZ is isomorphic to Km. (c) In the notation of Problem 6, show
that

Kab =
⋃
m≥1

Km,

the field of Puiseux series2.
17. Show that any group of order n is solvable, where (a) n = p2q and p, q
are distinct primes; (b) n = 2pq and p, q are odd primes.
18. Let M be a module over a ring R. A sequence of submodules

M = M1 ⊃M2 ⊃ . . . ⊃Mr = 0

is called a filtration of M (of length r). A module M is called simple if it
does not contain any submodules other than 0 and itself. A filtration is
called simple if each Mi/Mi+1 is simple. A module M is said to be of finite
length if it admits a simple finite filtration. Two filtrations of M are called
equivalent if they have the same length and the same collection of subquo-
tients {M1/M2,M2/M3, . . . ,Mr−1/Mr} (up to isomorphism). Prove that if
M has finite length then any two simple filtrations of M are equivalent and
any filtration of M can be refined to a simple filtration.
19. Describe all Abelian groups G that fit into the exact sequence

0→ Zn → G→ Zm → 0

(n and m are not necessarily coprime).

§6. APPLICATIONS OF GALOIS THEORY -II

§6.1. Solvable extensions: Galois Theorem. In this section we will as-
sume for simplicity that

charK = 0.
Alternatively, one can assume that all extensions we consider are separable
and their degrees are not divisible by characteristic.

DEFINITION 6.1.1.
• A finite extension F/K is called solvable if there exists a Galois ex-

tension L/K containing F with a solvable Galois group.
• A finite extension F/K is called solvable by radicals if there exists a

finite extension L/K containing F and admitting a tower

K = L0 ⊂ L1 ⊂ . . . ⊂ Lr = L

such that on each step Li = Li−1(α), where αn ∈ Li−1 for some n.

THEOREM 6.1.2. F/K is solvable if and only if it is solvable by radicals.

2Newton proved that the field of Puiseux series is in fact algebraically closed.



ALGEBRA: LECTURE NOTES 55

Proof. All fields appearing in the proof will be subfields of the fixed alge-
braic closure K̄. Let F/K be a solvable extension. Let L/K be the Galois
extension containing F with a solvable Galois group G of size n.

Let K(ζn) be the splitting field of xn − 1. Consider the diagram of fields

L(ζn)

L K(ζn)

K

The extension L(ζn)/K(ζn) is Galois. Its Galois groupH is isomorphic to
a Galois group of L/L ∩K(ζn) (Problem 9 from the previous homework),
which is a subgroup of G. Therefore, H is solvable.

A cyclic tower of subgroups

H = H1 ⊃ H2 ⊃ . . . ⊃ Hr = {e}

gives rise to a tower of subfields

K(ζn) = J1 ⊂ J2 ⊂ . . . ⊂ Jr = L(ζn),

where
Ji = L(ζn)Hi .

By the main Theorem on Galois theory, L(ζn)/Ji is Galois with a Galois
group Hi. Since Hi+1 is normal in Hi, Ji+1/Ji is Galois with a Galois group
Hi/Hi+1, which is cyclic.

Since Ji+1/Ji is a cyclic extension of degree d|n (by Lagrange Theorem),
and Ji contains n-th roots of unity, we can apply Theorem 5.5.1. We see
that on each step Ji+1 = Ji(α), where some power of α belongs to Ji−1, i.e.
F/K is solvable in radicals.

Conversely, suppose F/K is solvable in radicals, i.e. F is contained in a
field L that admits a tower

K ⊂ L1 ⊂ . . . ⊂ Lr = L

such that on each step Li = Li−1(α), where αk ∈ Li−1 for some k. Let n be
the l.c.m. of k’s that appear. Consider the tower of fields

K ⊂ K(ζn) ⊂ L1(ζn) ⊂ . . . ⊂ Lr(ζn) = M,

where each consecutive embedding is Galois with an Abelian Galois group
on the first step (by Theorem 5.3.1) and a cyclic Galois group for the re-
maining steps (by Theorem 5.5.1). Let g1, . . . , gk : M → K̄ be the list of
all embeddings over K. Each of the embeddings g(M) ⊂ K̄ has the same
property as above: in the corresponding tower

K ⊂ g ·K(ζn) ⊂ g · L1(ζn) ⊂ . . . ⊂ g ·M,

each consecutive embedding is Galois with an Abelian Galois group. We
can combine the towers above to refine the tower

K ⊂M = g1(M) ⊂ g1(M)g2(M) ⊂ . . . g1(M) . . . gk(M)
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to a tower that has the same property as above (by Problem 9 from the
previous homework). The field extensionM = g1(M) . . . gk(M) is clearly
Galois (in fact this the minimal Galois extension that containsM ). Its tower
of subfields induces an Abelian tower of subgroups of Gal(M/K). �

§6.2. Norm and Trace.

DEFINITION 6.2.1. Let F/K be a separable extension of degree n and let
σ1, . . . , σn : F → K̄ be the set of all embeddings over K. Let α ∈ F . We
define its trace

TrF/K(α) = σ1(α) + . . .+ σn(α)
and norm

NF/K(α) = σ1(α) . . . σn(α).

EXAMPLE 6.2.2. We have NC/R(a+ ib) = (a+ ib)(a− ib) = a2 + b2.

One has to be careful: the norm and the trace depend on the extension
and not just on α. But this dependence is easy to understand:

LEMMA 6.2.3. Let F/K and L/F be separable extensions and let α ∈ F . Then

TrL/K(α) = [L : F ] TrF/K(α) and NL/K(α) = NF/K(α)[L:F ].

Proof. This is clear: any embedding L → K̄ over K is obtained by extend-
ing some embedding σ : F → K̄. There are [L : F ] possible extensions,
and neither of them changes σ(α). �

As a consequence of Artin’s Lemma 5.5.3, we see that

COROLLARY 6.2.4. The trace TrF/K is not identically zero.

There are two simple ways to compute the trace and the norm:

LEMMA 6.2.5. Let f(x) = xk + a1x
k−1 + . . . + ak be the minimal polynomial

of α. Then

TrK(α)/K(α) = −a1 and NK(α)/K(α) = (−1)kak
The trace is an additive homomorphism TrF/K : F → K. The norm is a multi-
plicative homomorphism NF/K : F ∗ → K∗.

Proof. Notice that embeddings K(α) → K̄ just send α to various roots of
f(x). So the lemma follows from Vieta formulas. �

Here is another way to compute the norm and the trace:

LEMMA 6.2.6. Let α ∈ F and let A be a K-linear operator F → F of left multi-
plication by α. Then TrF/K(α) = Tr(A) and NF/K(α) = det(A).

Proof. Let e1, . . . , er be a basis of F over K(α). Then as a K-vector space, F
is a direct sum of vector subspaces

F = K(α)e1 ⊕ . . .⊕K(α)er.

Choosing a basis of F compatible with this decomposition, we see that the
matrix of A in this basis is block-diagonal with r = [F : K(α)] blocks,
where each block is a matrix of the left multiplication by α in K(α). So
it suffices to prove the lemma for the extension K(α)/K. In this case we
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choose a basis 1, α, . . . , αk−1 of K(α), where k = [K(α) : K]. Let f(x) =
xk + a1x

k−1 + . . .+ ak be the minimal polynomial of α. The matrix of A in
this basis is 

0 0 . . . 0 −ak
1 0 . . . 0 −ak−1

0 1 . . . 0
...

...
. . .

...
...

0 0 . . . 1 −a1


So we are done by the previous Lemma. �

§6.3. Lagrange resolvents. Let us remind that by Theorem 5.5.1, If F/K
is a Galois extension with a cyclic Galois group of order n, K contains a
primitive n-th root of 1, and charK does not divide n then F = K(α) for
some α ∈ F such that αn ∈ K. Moreover, the proof is constructive: we
show that one can take

α = Eζ(β) = β + ζ−1σ(β) + . . .+ ζ−(n−2)σn−2(β) + ζ−(n−1)σn−1(β), (12)

where ζ is a primitive n-th root of 1 and σ is a generator of the Galois group.
We proved that α 6= 0 for some β, σ(α) = ζα, αn ∈ K, and F = K(α). The
expression (12) is called a Lagrange resolvent.

Let’s push this a little bit further. As a function of β, Eζ(β) is an K-linear
function on F . We can define Eζk(β) for any 0 ≤ k < n in an obvious
way. For example, E1(β) is equal to TrF/K(β). Introducing a basis of F as
a K-vector space and the corresponding coordinates, the function

E1(β)Eζ(β) . . . Eζn−1(β)

is a polynomial (in n coordinates) of degree n. Let’s assume for simplicity
that K is an infinite field. Then this polynomial function does not vanish
for some β. It follows that we can find β ∈ F such that

E1(β), Eζ(β), . . . , Eζn−1(β)

are non-zero eigenvectors for σ with eigenvalues 1, . . . , σn−1. It also follows
that vectors

β, σ(β), . . . , σn−1(β)
are linear independent. In fact, their linear independence is equivalent to
linear independence of Lagrange resolvents because the transition matrix
between the two systems of vectors is the Vandermonde matrix

1 1 . . . 1
1 ζ . . . ζn−1

1 ζ2 . . . ζ2(n−1)

...
...

. . .
...

1 ζn−1 . . . ζ


We have proved a special case of the following quite deep

THEOREM 6.3.1 (Normal Basis Theorem). Let F/K be a finite Galois extension
of degree n with the Galois group G = {e = σ0, σ1, . . . , σn−1}. Then there exists
β ∈ F such that elements

β = σ0(β), σ1(β), . . . , σn−1(β)
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form a basis of F over K.

We will return to this theorem when we discuss representation theory of
finite groups.

§6.4. Solving solvable extensions. We say that the polynomial equation
f(x) = 0 is solvable in radicals if its splitting field is. By the Galois theorem,
this is equivalent to solvability of the Galois group. In problems 11 and 12
from the Homework of §4, you have constructed polynomials over Q with
Galois group Sn for any n. If n > 4, Sn is not solvable, and therefore this
equation is not solvable in radicals. On the other hand, any equation of de-
gree at most 4 is solvable in radicals because its Galois group is a subgroup
of S4, and the latter group is solvable.

The proof of the Galois theorem is quite constructive. So one can actually
“solve” solvable extensions. Let’s consider an equation of degree 3:

x3 + a1x
2 + a2x+ a3 = 0 ∈ K[x].

Since we are going to apply the Galois theorem, let’s assume right away
that K contains a primitive cubic root of unity ω and that charK 6= 2, 3.

Let F be the splitting field. In this field

f(x) = (x− x1)(x− x2)(x− x3).

Let G = Gal(F/K) ⊂ S3. It is an interesting question to figure out how to
compute G in general and it can be solved using the same methods that we
use here to compute the roots. So we are just going to assume that

G = S3.

Then we have a cyclic tower

{e} ⊂ A3 ⊂ S3

and the corresponding tower of subfields

F ⊃ FA3 ⊃ K.

The extension F/FA3 has a Galois group A3 ' Z/3Z which acts by cycli-
cally permuting the roots x1 → x2 → x3 → x1. Let’s write down all La-
grange resolvents:

E1 = x1 + x2 + x3

Eω = x1 + ω2x2 + ωx3

Eω2 = x1 + ωx2 + ω2x3

It suffices to derive formulas for the Lagrange resolvents, since then we
can compute the roots x1, x2, x3 by solving a system of linear equations. By
Vieta formulas, we have

E1 = −a1

and so it suffices to compute

E3
ω, E

3
ω2 ∈ FA3 .

The extension FA3/K is cyclic with a Galois group S3/A3 ' Z/2Z: this
quotient group is generated by a transposition σ that exchanges x1 ↔ x2.
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By our general recipe, instead of computingE3
ω andE3

ω2 we want to com-
pute their Lagrange resolvents

E3
ω ± σ(E3

ω) and E3
ω2 ± σ(E3

ω2),

which have the property that their squares belong toK. Here we are a little
but lucky because

σ(E3
ω) = σ(Eω)3 = (x2 + ω2x1 + ωx3)3 = (x1 + ωx2 + ω2x3)3 = E3

ω2 .

So the Lagrange resolvents for the second step are simply

E3
ω ± E3

ω2 .

It remains to compute these resolvents and then to solve the system of two
linear equations in two variables to find E3

ω and E3
ω2 . Note that E3

ω + E3
ω2

is invariant under σ, i.e. it is in fact a symmetric polynomial in x1, x2, x3,
i.e. it should be possible to express it in terms of coefficients of f(x). We
skip this routine calculation. Another resolvent is

E3
ω − E3

ω2 = (x1 + ωx2 + ω2x3)3 − (x1 + ω2x2 + ωx3)3 =

(ω − ω2)(x2
1x2 − x1x

2
2 + x1x

2
3 − x2

1x3 + x2
2x3 − x2x

2
3) =

=
√

3i(x1 − x2)(x1 − x3)(x2 − x3) =
√

3iD,
where D is the discriminant. It is a routine calculation to express D2 in
terms of coefficients of f(x).

This calculation gives formulas for x1, x2, x3 discovered by an amazing
Italian mathematician Niccolò Tartaglia and nowdays unfairly attributed to
Cardano (who promised Tartaglia to never publish his solution). Tartaglia
explained his solution in this beautiful poem.

When the cube and the things together
Are equal to some discrete number,
Find two other numbers differing in this one
Then you will keep this as a habit
That their product should always be equal
Exactly to the cube of a third of the things.
The remainder then as a general rule
Of their cube roots subtracted
Will be equal to your principal thing.
In the second of these acts,
When the cube remains alone
You will observe these other agreements:
You will at once divide the number into two parts
So that the one times the other produces clearly
The cube of a third of the things exactly.
Then of these two parts, as a habitual rule,
You will take the cube roots added together,
And this sum will be your thought.
The third of these calculations of ours
Is solved with the second if you take good care,
As in their nature they are almost matched.
These things I found, and not with sluggish steps,
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In the year one thousand five hundred, four and thirty
With foundations strong and sturdy
In the city girdled by the sea.

Niccolò Tartaglia

§6.5. Exercises.
1. Show that Sn is solvable if and only if n ≤ 4.
2. (a) Let f(x) ∈ K[x] be an irreducible separable polynomial with roots

α = α1, α2, . . . , αn ∈ K̄.

Suppose that there exist rational functions θ1(x), . . . , θn(x) ∈ K(x) such
that αi = θi(α) for any i. Suppose also that

θi(θj(α)) = θj(θi(α))

for any i, j. Show that K(α)/K is solvable in radicals. Hint: this case was
examined by this famous Norwegian mathematician:

(b) Give an example of the situation as in part (a) withK = Q and such that
the Galois group of f(x) is not cyclic. Give a specific polynomial f(x), and
compute its roots and functions θi.
3. Let F/K be a finite Galois extension and letL be an intermediate subfield
between F andK. LetH be the subgroup of Gal(F/K) mapping L to itself.
Prove that H is the normalizer of Gal(F/L) in Gal(F/K).
4. Let F/K be a Galois extension with a cyclic Galois group G. Let σ be a
generator of G. Show that

Ker[TrF/K ] = Im[IdF −σ].

In other words, if β ∈ F then TrF/K(β) = 0 iff β = α−σ(α) for some α ∈ F .

5. Consider the extension Q ⊂ F = Q(ζp,
p
√

2), where p is a prime and ζp
is the primitive p-th root of unity. Show that Gal(F/Q) is isomorphic the
semidirect product of Z/pZ and F∗p.
6. Let F/K be a Galois extension with a cyclic Galois group G of order p,
where charK = p. Let σ be a generator of G. (a) Show that there exists
α ∈ F such that σ(α) = α+ 1. (b) Show that F = K(α), where α is a root of
xp − x− a for some a ∈ K.
7. Suppose that charK = p and let a ∈ K. Show that the polynomial
xp− x− a either splits in K or is irreducible. Show that in the latter case its
Galois group is cyclic of order p.



ALGEBRA: LECTURE NOTES 61

8. Let F/K be a Galois extension with a cyclic Galois group G. Let σ be a
generator of G. Let β ∈ F . (a) There exists θ ∈ F such that α 6= 0, where

α = θ+βσ(θ)+βσ(β)σ2(θ)+βσ(β)σ2(β)σ3(θ)+. . .+βσ(β) . . . σn−2(β)σn−1(θ).

(b) Show that NF/K(β) = 1 if and only if β = α/σ(α) for some α ∈ F .

9. Let f(x) be the minimal polynomial over Q of 5
√

3
√

17 + 4
√

37, where all
of the indicated radicals are real. Show that the splitting field of f(x) is
solvable over Q.
10. Let K = Q(ζ), where ζ is a primitive n-th root of unity. Show that if
n = pr for some prime p then NK/Q(1− ζ) = p.
11. Suppose that F/K andL/F are solvable extensions (recall that this does
not mean that these extensions are Galois). Is it true that L/K is a solvable
extension?
12. Prove that there exist infinitely many pairs of integers (a, b) such that
−4a3 − 27b2 is a square in Z.
13. Let n and m be coprime integers. Show that Φn(x) (the n-th cyclotomic
polynomial) is irreducible over Q(ζm).
14. Let G be a subgroup of the group of automorphisms of C(z) (rational
functions in one variable) generated by automorphisms z 7→ 1 − z and
z 7→ 1/z. Show that G has 6 elements and that the field of invariants C(z)G

is generated by one function. Find this function.
15. Let f(x) ∈ K[x] be an irreducible polynomial of degree 5 such that
its discriminant is a square in K. Find all possible Galois groups for its
splitting field. For each possible Galois group, give an example of f(x) ∈
Q[x] with this Galois group.

§7. TRANSCENDENTAL EXTENSIONS

§7.1. Transcendental Numbers: Liouville’s Theorem. The field of alge-
braic numbers Q̄ ⊂ C is countable but C is not. So “most” of complex
numbers are transcendental (Cantor, 1874). But it is difficult to prove that
this or that number is transcendental, and methods developed to answer
these questions have lead to many exciting discoveries in number theory.

The first transcendental number was constructed by Liouville (1844). An
irrational number α ∈ R is called a Liouville number if, for any positive
integer n, there exist integers p and q with q > 1 and such that∣∣∣∣α− p

q

∣∣∣∣ < 1
qn
.

In other words, a Liouville number admits an incredibly close approxima-
tions by rational numbers. Liouville himself considered a number

α =
∞∑
j=1

10−j! = 0.110001000000000000000001000 . . . ,

which obviously has this property. Indeed,
n∑
j=1

10−j! =
p

q
where q = 10n!
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and ∣∣∣∣α− p

q

∣∣∣∣ < 1
10(n+1)!−1

<
1
qn

LEMMA 7.1.1. Liouville numbers are transcendental.

Proof. Suppose that α is algebraic and let f(x) ∈ Z[x] be a mutiple of its
minimal polynomial. Let m = deg f(x). Let

M := sup
|x−α|≤1

|f ′(x)|.

Take n > 0 and let p/q be an approximation of α as in the definition of the
Liouiville number. We obviously have

|f(p/q)| ≥ 1/qm.

But by the mean value theorem

1
qm
≤ |f(p/q)| = |f(p/q)− f(α)| ≤M

∣∣∣∣pq − α
∣∣∣∣ < M

qn
.

If n is large enough, this gives a contradiction. �

It is clear that these Liouville numbers are somewhat artificial. With
some effort, one can show that “interesting” numbers, such as e or π, are
not Liouville. For example, one can show that Liouville numbers have un-
bounded denominators in its continued fraction expansion. For the Euler
number e, the explicit continued fraction expansion was found by Euler:

e =2+ 1
1+ 1

2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

1+ 1

6+ 1
1+...

It has unbounded denominators, but one can still prove using this expan-
sion that e is not a Liouville number.

§7.2. Hermite’s Theorem. The first proof that e is transcendental was found
by Hermite (1873).

Proof. For any polynomial f(x), we set

F (x) = f(x) + f ′(x) + f ′′(x) + . . .

Hermite shows (using iterated integration by parts) the following identity:

exF (0)− F (x) = ex
∫ x

0
e−tf(t) dt.

Indeed, we have

ex
∫ x

0
e−tf(t) dt = exf(0)− f(x) + ex

∫ x

0
e−tf ′(t) dt

and then we iterate the process.
Now we assume that e is algebraic, i.e.

a0 + a1e+ . . .+ ane
n = 0
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for some rational numbers ai with a0 6= 0. Setting x = k in the identity
above, multiplying the equation by ak, and adding these equations gives

F (0)
n∑
k=0

ake
k −

n∑
k=0

akF (k) =
n∑
k=0

ake
k

∫ k

0
e−tf(t) dt

which gives

a0F (0) +
n∑
k=1

akF (k) = −
n∑
k=0

ake
k

∫ k

0
e−tf(t) dt (13)

Now we choose f(t) by setting

f(t) =
1

(p− 1)!
tp−1

n∏
k=1

(k − t)p,

where p is a sufficiently large prime.

CLAIM 7.2.1. The RHS of (13) tends to 0 as the prime p increases.

Indeed,∣∣∣∣∣
n∑
k=0

ake
k

∫ k

0
e−tf(t) dt

∣∣∣∣∣ < C

∫ n

0
|f(t)| dt < C1(C2)p

(p− 1)!
→ 0.

So it suffices to prove the final

CLAIM 7.2.2. The LHS of (13) is a non-zero integer.

The trick is to show that the LHS is an integer that is not divisible by p.
Since f(t) has a zero of multiplicity p− 1 at t = 0, we have

f (k)(0) = 0, k < p− 1,

and by the (iterated) differentiation of a product formula

f (k)(0) =
(

k

p− 1

)
dk−p+1

dtk−p+1

n∏
k=1

(k − t)p|t=0, k ≥ p− 1.

So, for example,
f (p−1)(0) = (n!)p.

We see that f (k)(0) is integral for any k and that f (p−1)(0) is not divisible
by p but f (k)(0) is divisible by p for any k 6= p − 1 because differentiating
the product

∏n
k=1(k − t)p gives a factor of p. Therefore a0F (0) is integral

but not divisible by p (if p is large enough).
Since f(t) has a zero of multiplicity p at t = m, 1 ≤ m ≤ n, we have

f (k)(m) = 0, 0 ≤ k ≤ p− 1

and

f (k)(m) = −p
(
k

p

)
dk−p

dtk−p

tp−1
∏

i=1...n
i 6=m

(s− t)p)


∣∣∣∣∣∣∣
t=m

, k ≥ p,

is integral and divisible by p. It follows that the LHS of (13) is an integer
and is not divisible by p. In particular it is not zero. �
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In 1982, Lindemann used Hermite’s identity above to show that π is tran-
scendental as well. In fact, he proved the following:

THEOREM 7.2.3. If α1, . . . , αr are distinct algebraic numbers then eα1 , . . . , eαr

are linearly independent over Q̄.

The proof is very similar to the proof of Hermite’s theorem.
The transcendence of π follows by the following trick: the Euler identity

eπi = −1

shows that eπi and e0 are linearly dependent over Q̄. It follows that πi, and
therefore π, is transcendental.

§7.3. Transcendence Degree.

DEFINITION 7.3.1. Let K/k be a field extension and let S be a subset of K.
We say that S is algebraically dependent over k if there exists a non-zero poly-
nomial f ∈ k[x1, . . . , xn] such that

f(α1, . . . , αn) = 0

for some different α1, . . . , αn ∈ S. Otherwise, we say that S is algebraically
independent over k.

If S = {α} then S is algebraically dependent if and only if α is algebraic
over k. This can be generalized as follows:

LEMMA 7.3.2. Let S = {α1, . . . , αn} ⊂ K. Then S is algebraically independent
over k if and only if α1 is not algebraic over k, α2 is not algebraic over k(α1), . . .,
αn is not algebraic over k(α1, . . . , αn−1). In this case k(α1, . . . , αn) is isomorphic
to the field k(x1, . . . , xn) of rational functions in n variables.

Proof. Suppose that S is algebraically dependent. There exists αi (perhaps
i = 1) such that α1, . . . , αi−1 are algebraically independent but α1, . . . , αi
are algebraically dependent. Let f(x1, . . . , xi) ∈ k[x1, . . . , xi] be a non-
trivial polynomial such that f(α1, . . . , αi) = 0. Take

g(xi) := f(α1, . . . , αi−1, xi) ∈ k(α1, . . . , αi−1)[xi].

Since α1, . . . , αi−1 are algebraically independent, g(xi) 6= 0. Since g(αi) = 0,
αi is algebraic over k(α1, . . . , αi−1).

Now suppose that αi is algebraic over k(α1, . . . , αi−1). Then there exists
a non-trivial polynomial g(xi) ∈ k(α1, . . . , αi−1)[xi] such that g(αi) = 0. By
clearing denominators, we get a non-trivial polynomial f ∈ k[x1, . . . , xn]
such that f(α1, . . . , αn) = 0.

Consider the homomorphism k[x1, . . . , xn] → K that sends xi to αi. Its
kernel is trivial by definition of algebraic independence. Therefore, we
have an induced embedding of the field of fractions k(x1, . . . , xn) ↪→ K.
The image is equal to k(α1, . . . , αn). �

DEFINITION 7.3.3. An algebraically independent subset S ⊂ K is called a
transcendence basis if K is algebraic over k(S). The cardinality of any tran-
scendence basis is called the transcendence degree of K/k (we will prove that
it does not depend on S). Notation: tr.deg.(K/k)
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The concept of algebraic dependence is similar to the concept of linear
dependence but in a slightly non-trivial way. Here are some parallels:

Linear algebra Fields

vector space V Field extension K/k
linearly independent subsets algebraically independent subsets

v ∈ Span{u1, . . . , un} β is algebraic over k(α1, . . . , αn)
basis transcendence basis

dimension transcendence degree

There is a good reason for this analogy: just like the number of elements
in any basis of a vector space computes its dimension, the transcendence
degree of a field extension computes the dimension of the algebraic set. We
will discuss this correspondence in the next chapter.

Now the main result:

THEOREM 7.3.4. Suppose there exists a finite subset S ⊂ K such that K is alge-
braic over k(S). Then K admits a finite transcendence basis, and all these bases
have the same number of elements (i.e. the transcendence degree is well-defined).

Proof. We can assume that S is the minimal (by inclusion) subset such that
K is algebraic over k(S). If S = {α1, . . . , αn} is algebraically independent
then S is a transcendence basis, by definition. Suppose it is algebraically
dependent. After renumbering, we can assume that αn is algebraic over
k(α1, . . . , αn−1). Then K is algebraic over k(α1, . . . , αn−1). It follows that S
is not the minimal subset such thatK is algebraic over k(S), a contradiction.

The fact that all transcendence bases have the same number of elements
is a bit subtle (just like the fact that dimension of a vector space is well-
defined is a bit subtle) and follows from Lemma 7.3.6, which in turn follows
from the basic Exchange Lemma below. �

LEMMA 7.3.5 (Exchange property). Let {α1, . . . , αm} be a subset of K.
If β ∈ K is algebraic over k(α1, . . . , αm) but not over k(α1, . . . , αm−1) then
αm is algebraic over k(α1, . . . , αm−1, β).

Proof. By shrinking, we can assume that α1, . . . , αm−1 are algebraically in-
dependent. It follows that α1, . . . , αm−1, β are algebraically independent.
Let f ∈ k[x1, . . . , xm, y] be a polynomial such that

f(α1, . . . , αm, y) 6= 0, f(α1, . . . , αm, β) = 0.

Then
f =

∑
gi(x1, . . . , xm−1, y)xim.

Take i such that gi 6= 0. Since α1, . . . , αm−1, β are algebraically independent,
we have

gi(α1, . . . , αm−1, β) 6= 0.
Therefore, f(α1, . . . , αm−1, xm, β) is a non-trivial polynomial which van-
ishes for xm = αm. So αm is algebraic over k(α1, . . . , αm−1, β). �

LEMMA 7.3.6. IfA = {α1, . . . , αm} andB = {β1, . . . , βn} are subsets ofK such
that
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• A is algebraically independent and
• every element of A is algebraic over k(B),

then m ≤ n.

Proof. IfA ⊂ B then there is nothing to prove. We will reduce to this case by
applying the exchange property several times. After renumbering, suppose
that

B = {α1, . . . , αk, βk+1, . . . , βn},
where βi 6∈ A for i ≥ k + 1. Since αk+1 is algebraic over k(B) but not over
k(α1, . . . , αk), there exists some βi for i ≥ k + 1 such that αk+1 is algebraic
over k(α1, . . . , αk, βk+1, . . . , βi) but not over k(α1, . . . , αk, βk+1, . . . , βi−1).
By exchange lemma, βi is algebraic over

B1 = B ∪ {αk+1} \ {βi}.
Therefore any element of B is algebraic over k(B1). By transitivity of alge-
braic dependence, any element of A is algebraic over k(B1). Notice that B1

andB have the same number of elements butA andB1 have more elements
in common than A and B. �

§8. ALGEBRAIC SETS

§8.1. Noether’s Normalization Lemma. Theorem 7.3.4 has a basic

COROLLARY 8.1.1. Let K be a finitely generated field extension of k. Then K
contains algebraically independent over k elements x1, . . . , xn such that K is a
finite algebraic extension of k(x1, . . . , xn)

For k-algebras, we have the following more precise result.

LEMMA 8.1.2 (Noether’s Normalization Lemma). LetA be a finitely generated
k-algebra. Then A contains algebraically independent over k elements x1, . . . , xn
such that A is integral over k[x1, . . . , xn]

Recall that a k-algebra A is a ring that contains k. It is finitely generated
if it contains elements y1, . . . , yr such that any element of A is a polynomial
in y1, . . . , yr with coefficients in k. This can be expressed by saying that
A = k[y1, . . . , yr] but this notation is a bit ambiguous: A is isomorphic to
the algebra of polynomials in r variables only if y1, . . . , yr are algebraically
independent. In general,A is only a quotient algebra of the algebra of poly-
nomials in r variables by some ideal I . These algebras are very important
in geometry, because they serve as algebras of functions of algebraic sets
given by vanishing of polynomials in I (under some mild conditions on I
to be discussed later).

Recall that an element a ∈ A is integral over a subring B ⊂ A if a is a
root of a monic polynomial with coefficients in B. The only difficulty in the
proof of Noether’s normalization lemma is to convert an algebraic relation

f(y1, . . . , yr) = 0

between generators into an integral dependence relation of one of the gen-
erators, something like

yNr + g1(y1, . . . , yr−1)yN−1
r + . . .+ gN (y1, . . . , yr−1) = 0.

It turns out that this is possible after a very simple “change of variables”.
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Proof. Suppose that k is an infinite field (see exercises for a finite field case).
Let y1, . . . , yr be generators ofA over k. We argue by induction on r. If r = 1
there is nothing to prove. If y1, . . . , yr are algebraically independent then
again there is nothing to prove. Suppose we have a polynomial equation

f(y1, . . . , yr) = 0.

Let F (y1, . . . , yr) be the homogeneous component of f of top degree. Then
F (y1, . . . , yr−1, 1) is a non-trivial polynomial. Since k is infinite, we can find
λ1, . . . , λr−1 ∈ k such that

F (λ1, . . . , λr−1, 1) 6= 0.

Now we introduce new elements y′1, . . . , y
′
r−1 ∈ A by formulas

y1 = y′1 + λ1yr, . . . , yr−1 = y′r−1 + λr−1yr.

We notice that y′1, . . . , y
′
r−1, yr generate A and we have

g(y′1, . . . , y
′
r−1, yr) := f(y′1 + λ1yr, . . . , y

′
r−1 + λr−1yr, yr) = 0.

As a polynomial in yr, g has top coefficient F (λ1, . . . , λr−1, 1) 6= 0. So A
is integral over a subalgebra A′ generated by y′1, . . . , y

′
r−1. By induction,

A′ is integral over its subalgebra B generated by algebraically independent
elements x1, . . . , xn. By transitivity of integral dependence, A is integral
over B as well. �

§8.2. Weak Nullstellensatz. One of the main ideas of algebraic geometry
is to build a vocabulary that relates geometric properties of “spacesX” and
algebraic properties of their “rings of functionsO(X)”. As a basic example,
lets fix a field k and consider an affine space over this field:

An.

Of course points of An are just n-tuples (a1, . . . , an) ∈ kn, but we don’t
care much about the vector space structure here, so the notation An is more
convenient. We consider only polynomial functions in algebraic geometry,
so we take

O(An) = k[x1, . . . , xn].

THEOREM 8.2.1 (Weak Nullstellensatz). If k is algebraically closed then there is
a 1-1 correspondence between points of An and maximal ideals of O(An). More
precisely, a point of An corresponds to the maximal ideal that consists of all poly-
nomials that vanish at this point.

Proof. Given a point a = (a1, . . . , an), consider an evaluation homomor-
phism

ψ : k[x1, . . . , xn]→ k, xi 7→ ai.

It is surjective onto a field, and so its kernel is a maximal ideal.
Now suppose that m ⊂ k[x1, . . . , xn] is a maximal ideal such that

k[x1, . . . , xn]/m ' k.

Consider the corresponding homomorhism ψ : k[x1, . . . , xn] → k and let
ai := ψ(xi). Then ψ is completely determined by a1, . . . , an, and therefore
ψ is an evaluation map at the point (a1, . . . , an) of An.
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Next we notice that if m ⊂ k[x1, . . . , xn] is any maximal ideal then A :=
k[x1, . . . , xn]/m is a field that contains k, and which is finitely generated
over k. Since k is also algebraically closed, everything follows from the
following lemma. �

LEMMA 8.2.2. If A is a finitely generated k algebra and a field, then A is a finite
algebraic extension of k. In particular, if k is algebraically closed them A = k.

Proof. By Noether’s normalization lemma, A is integral over its subalgebra
B = k[x1, . . . , xr], where x1, . . . , xr are algebraically independent over k.
Let α ∈ B. Since A is a field, 1/α is in A. Since A in integral over B, 1/α
satisfies a monic equation

(1/α)n + b1(1/α)n−1 + . . .+ bn, bi ∈ B.

Multiplying by αn−1, this gives

1/α = −b1 − . . .− bnαn−1 ∈ B,

i.e. B is a field as well. But this is impossible unless r = 0, because B is
isomorphic to the algebra of polynomials in r variables. So A is integral
over k. It follows that A is a finite algebraic extension of k. �

§8.3. Affine Algebraic Sets. Strong Nullstellensatz. The fundamental the-
orem of algebra can be rephrased by saying that there is a bijection between
polynomials f ∈ C[x] (up to a scalar multiple) and its roots α1, . . . , αn ∈ C
(with multiplicities). In other words, there is a bijection between proper
ideals A ∈ k[x] (algebra) and finite subsets of points in k with multiplicities
(geometry). Let’s see how to generalize this to higher dimensions.

Let k be an algebraically closed field.

DEFINITION 8.3.1. A subset X ⊂ kn is called closed algebraic if there exist
polynomials f1, . . . , fm ∈ k[x1, . . . , xn] such that

X = {(a1, . . . , an) | fi(a1, . . . , an) = 0 for any i}.

This subset depends only on the ideal A = (f1, . . . , fm) ⊂ k[x1, . . . , xn]
and not on the actual polynomials. So alternatively, we can also define
closed algebraic subsets as subsets of the form

V (A) = {(a1, . . . , an) | f(a1, . . . , an) = 0 for any f ∈ A},

whereA is a fixed ideal. By the Hilbert basis theorem, any idealA is finitely
generated by some f1, . . . , fm ∈ k[x1, . . . , xn], so this definition is the same
as above.

If X is a closed algebraic subset, we can take a look at all polynomial
functions that vanish at X :

I(X) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for any (a1, . . . , an) ∈ X}.

It is clear that A ⊂ I(V (A)). The precise relationship is given by

THEOREM 8.3.2 (Strong Nullstellensatz).

I(V (A)) =
√
A := {g ∈ k[x1, . . . , xn] | gl ∈ A for some integer l}.
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Proof. It is clear that
√
A ⊂ I(V (A)). So we only have to show the other

inclusion. The Nullstellensatz has many proofs, but we we will follow one
particularly nice approach known as “Rabinowitch’s trick”. In concrete
terms, we have to show the following. Let A = (f1, . . . , fm) and sup-
pose that g ∈ k[x1, . . . , xn] vanishes at any point (a1, . . . , an) where each
fi vanishes. Then we claim that there exists an integer l and polynomials
h1, . . . , hm such that

gl =
∑

hifi.

We introduce the ideal

B = (f1, . . . , fm, 1− gxn+1) ⊂ k[x1, . . . , xn+1].

We claim that B = k[x1, . . . , xn+1]. If not then B is contained in a maximal
ideal m. By the weak Nullstellensatz, m consists of all polynomials that
vanish at some point (a1, . . . , an+1). But then fi(a1, . . . , an) = 0 for any i
but g(a1, . . . , an)an+1 = 1. This is a contradiction because g(a1, . . . , an) = 0.

It follows that we can find polynomials h1, . . . , hm+1 ∈ k[x1, . . . , xn+1]
such that ∑

hifi + hm+1(1− gxn+1) = 1.

The trick is to substitute 1/g for xn+1 in this formula. This gives∑
hi(x1, . . . , xn, 1/g)fi(x1, . . . , xn) = 1.

Clearing denominators (i.e. multiplying by a sufficiently large power of g),
this gives ∑

h∗i (x1, . . . , xn)fi(x1, . . . , xn) = gl(x1, . . . , xn)

for some new polynomials h∗1, . . . , h
∗
m. �

COROLLARY 8.3.3. Operations V and I set up a bijection between closed algebraic
subsets of An and ideals A ⊂ k[x1, . . . , xn] such that A =

√
A.

Ideals A such that A =
√
A are sometimes called radical ideals.

Proof. Let A =
√
A. By the strong Nullstellensatz, we have

I(V (A)) =
√
A = A.

Now suppose that X = V (B) is an algebraic set. Then, clearly, I(X) is
radical and by the strong Nullstellensatz,

V (I(X)) = V (
√
B) = V (B) = X.

�

§8.4. Preview of Schemes: a double point. MaxSpec Z. The Nullstellen-
satz shows that there is a bijection between algebraic subsets X ⊂ An and
radical ideals in k[x1, . . . , xn] that sendsX to I(X). Geometric properties of
X are encoded in algebraic properties of its algebra of polynomial functions

O(X) = k[x1, . . . , xn]/I(X).

In the one-dimensional case, algebraic subsets A ⊂ A1 are just finite col-
lections of points α1, . . . , αn ∈ A1. Then I(X) is the ideal generated by a
square-free polynomial (x − α1) . . . (x − αn). To ignore multiplicities, we
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had to shrink the set of interesting ideals. Another approach is to keep
all ideals and to enhance geometry by considering points with multiplici-
ties. A systematic development of this idea leads to the theory of algebraic
schemes. To get its flavor, let us consider a double point, i.e. a point in A1

(for instance the origin) of multiplicity 2.
The corresponding ideal is (x2) ⊂ k[x]. For a simple point, the algebra of

functions k[x]/(x) ' k consists of constants only. But for the double point
we get the algebra of dual numbers

k[x]/(x2) = {a+ bε | ε2 = 0}.
For a simple point, the restriction homomorphism k[x] → k just sends a

function f to its value (at 0):

k[x]→ k, f(x) 7→ f(0)

But for a double point, the restriction homomorphism, by the Tailor for-
mula, is

f(x) 7→ f(0) + f ′(0)ε
This is often phrased by saying that a double point is a point plus a tangent
vector to A1 at this point. A double point knows not just how to evaluate
a function, but also how to take a derivative of a function in a given di-
rection! In other words, a double point can be thought of as a very small
“ε-neighborhood” of a point, which is big enough to compute a derivative
of any function, but too small to compute derivatives of higher order.

If one starts with any ringR, the Nullstellensatz paves a way to construct
a geometric object that encodes algebraic properties of R. In fact, there is
an hierarchy of geometric objects that encode algebra ofR better and better.
The first approximation is to take a maximal spectrum of R:

MaxSpec(R) = {m ⊂ R |m is a maximal ideal}.
For example, if X ⊂ An is an algebraic set and R = k[x1, . . . , xn]/I(X) then
the maximal ideals of R correspond to maximal ideals of k[x1, . . . , xn] that
contain I(X). By the weak Nullstellensatz, this gives a bijection

MaxSpec(R) = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 for any f ∈ I(X)}.
By Corollary 8.3.3, it follows that

MaxSpec(R) = X.

What if we take R = Z? Then

MaxSpec(R) = {(p) p is a prime number}.
Any number n ∈ Z can be thought of as a function on MaxSpec(R):

(p) ∈ MaxSpec(R) 7→ n+ (p) ∈ Z/pZ.
Notice that this function is a bit unusual from the calculus perspective: it
takes values in different fields at different points!

What are the “zeros” of n ∈ Z? Those are points where the function
vanishes, i.e. (p) such that p|n. The fundamental theorem of arithmetic
can be interpreted by saying that any n ∈ Z is uniquely determined by
its “roots”, i.e. by primes appearing in its prime decomposition. We can
also attach multiplicities to prime numbers in the obvious way. So we see
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that the fundamental theorems of arithmetic and of algebra geometrically
encode very similar statements in the spirit of Nullstellensatz.

§8.5. Exercises.
1. Let S be a finite set and let I be a non-empty collection of its subsets
(called the independent sets). A pair (S, I) is called a finite matroid if

• every subset of an independent set is independent;
• Exchange property: If A and B are independent sets and |A| > |B|

then there exists x ∈ A \B such that B ∪ {x} is independent.
Show that the following pairs are matroids. (a) S is the set of columns of a
matrixA over a field k; I is the collection of linearly independent subsets of
columns. (b) Let K/k be a field extension and let S ⊂ K be a finite subset.
Let I be the collection of algebraically independent subsets of S. (c) Let S
be a set with n elements and let I be the collection of subsets with at most r
elements (a uniform matroid). (d) Let S be the set of edges of a finite graph.
Let I be the collection of subsets of edges that do not contain cycles.
2. Let (S, I) be a finite matroid. A maximal (by inclusion) independent
subset is called a basis of the matroid. Show that any two bases have the
same number of elements (called the rank of the matroid).
3. (a) Define the notion of isomorphic matroids. (b) Let (S, I) be a uniform
matroid of rank 2 (as in 1c). Show that S is isomorphic to a matroid of type
1a with k = Fq if and only if |S| ≤ q + 1. (c) Show that any matroid of type
1d is isomorphic to a matroid of type 1a with k = F2 (Hint: the matrix A
has a simple meaning in terms of the graph).
4. Let B be a non-empty collection of subsets of a finite set S. Show that
B is a collection of bases of some matroid if and only if for any B1, B2 ∈ B
and x ∈ B1 \B2, there exists y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.
5. Let x be transcendental over k and let F ⊂ k(x) be a subfield properly
contaning k. Show that k(x) is finite-dimensional over F .
6. Let K1 and K2 be algebraically closed extensions of C of transcendence
degree 11. Let f : K1 → K2 be a homomorphism. Show that f is an
isomorphism.
7. Let k ⊂ K ⊂ E be field extensions with tr.deg. E/k <∞. Show that

tr.deg. E/k = tr.deg.K/k + tr.deg. E/K.

8. Prove the Noether normalization theorem when k is a finite field. Hint:
instead of the substitution y′i = yi − λiyk (with λi ∈ k), use the substitution
y′i = yi − yni

k for appropriate powers ni.
9. (a) Let A ⊂ B be domains and suppose that B is integral over A. Show
that A is a field if and only if B is a field. (b) Let A ⊂ B be rings and
suppose that B is integral over A. Let p ⊂ B be a prime ideal. Show that p
is a maximal ideal of B if and only if p ∩A is a maximal ideal of A.
10. (a) Let A be an integrally closed domain with the field of fractions K.
Let F/K be a Galois extension with the Galois group G. Let B be the inte-
gral closure of A in F . Show that G preserves B and that BG = A. (b) De-
duce from part (a) that the ring of invariants k[x1, . . . , xn]Sn is generated by
elementary symmetric functions σ1, . . . , σn.
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11. Let A be a finitely generated k-algebra and let B ⊂ A be a subalgebra
such thatA is integral overB. Show thatA is a finitely generatedB-module
and B is a finitely generated k-algebra (Hint: consider a subalgebra of B
generated by coefficients of monic equations satisfied by generators of A).
12. Let f, g ∈ C[x, y] and suppose that f is irreducible and does not divide
g in C[x, y]. (a) Show that f is still irreducible and does not divide g in
C(x)[y]. (b) Show that

V (f, g) = {(x, y) ∈ C2 | f(x, y) = g(x, y) = 0}
is a union of finitely many points.
13. Let p ⊂ C[x, y] be a prime ideal. Show that either p = {0} or p consists
of all polynomials vanishing at some point (a, b) ∈ C2 or p = (f), where
f ∈ C[x, y] is an irreducible polynomial.

§9. GEOMETRY AND COMMUTATIVE ALGEBRA

§9.1. Localization and Geometric Intuition Behind It.

EXAMPLE 9.1.1 (Number Theory). The most familiar example of localiza-
tion is a formation of rational numbers as fractions of integers: Z ⊂ Q.
There are many intermediate subrings between Z and Q that can be formed
by restricting what kind of denominators we want. For example, we can in-
vert only 2:

Z[1/2] =
{ a

2n
| a ∈ Z, n ≥ 0

}
⊂ Q.

Or we can invert everything coprime to 2 (i.e. odd):

Z(2) =
{a
b
| a, b ∈ Z, b 6∈ (2)

}
⊂ Q.

This ring has only one maximal ideal, namely a principal ideal generated
by 2. Indeed, any element not in this ideal is a unit, and so can not be
contaned in a proper ideal. Z(2) is an example of a local ring:

DEFINITION 9.1.2. A ring R is called local if it has only one maximal ideal.

EXAMPLE 9.1.3 (Geometry). What is the geometry behind this? In geometry
we often study spaces locally, i.e. in neighborhoods of points. What are
these neighborhoods in algebraic geometry? Consider the affine line A1

with ring of functions k[x]. We want to define neighborhoods of 0. We
had a definition of a closed algebraic set, in this case just a finite set of
points. Complements of closed algebraic sets are called Zariski open sets.
They form a topology, called Zariski topology. So neighborhoods of 0 look
like A1 \ {α1, . . . , αr}, for example U = A1 \ {1}. What are the functions
on this neighborhood? We are algebraists, so interested in polynomial or
rational functions, and here we can take

OU = k

[
x,

1
x− 1

]
,

i.e. rational functions with poles only at 1. More generally, for U = A1 \
{α1, . . . , αr}we will get

OU = k

[
x,

1
x− α1

, . . . ,
1

x− αr

]
.
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Let’s go even further and invert all polynomials that don’t vanish at 0:

k[x](x) =
{
f(x)
g(x)

| g(x) 6= 0
}
.

So we take all functions defined in some Zariski neighborhood of 0 (that
depend on a function: have to throw away all roots of the denominator).
This is again a local ring: the only one maximal ideal consists of fractions
such that f(0) = 0, i.e. such that f(x) ∈ (x) ⊂ k[x].

A useful intuition is to think about k[x](x) as functions on a small “local”
neighborhood of 0 ∈ A1, even though there is no Zariski neighborhood that
we can use for this purpose.

Now let’s give a general algebraic definition.

DEFINITION 9.1.4. A subset S ⊂ R is called a multiplicative system if
• If s, t ∈ S then st ∈ S.
• 1 ∈ S, 0 6∈ S.

A multiplicative system is the set of future “denominators”, i.e. things that
we want to invert. We define a localization S−1R as a set of equivalence
classes of fractions r/s, where r ∈ R, s ∈ S, such that two fractions r/s and
r′/s′ are considered equivalent if there exists t ∈ S such that

t(s′r − sr′) = 0.

Notice that if R is a domain then of course we can take t = 1, but in general
we have to modify the usual cross-multiplication formula as above. We de-
fine ring operations on R as usual addition and multiplication of fractions.
One has to check that these operations are well-defined. Finally, we have a
homomorphism

R→ S−1R, r 7→ r/1.
If R is not a domain, this homomorphism is not necessarily injective.

LEMMA 9.1.5. The ring S−1R is well-defined.

Proof. This is a bit tedious, but done in class. �

EXAMPLE 9.1.6. Let R be a domain, S = R \ {0}. Then S−1R is the quotient
field of R. More generally, if R is not necessarily a domain, one can take
S to be the set of non-zerodivisors (this is the largest set we can hope to
invert). Then S−1R is called a total ring of fractions.

EXAMPLE 9.1.7. Suppose x ∈ R is not a nilpotent. Then

S = {1, x, x2, x3, . . .}
is a multiplicative system. The corresponding localization S−1R is often
denoted by R[1/x].

Finally, here is perhaps the most important example:

EXAMPLE 9.1.8. Let p ⊂ R be a prime divisor, i.e.

if xy ∈ p then either x ∈ p or y ∈ p.

Taking a contrapositive of this statement shows that

S = R \ p
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is a multiplicative system. There is a special notation for S−1R: it is denoted
by Rp and called localization of R at p.

EXAMPLE 9.1.9. For a concrete example of Rp, take (x) ⊂ k[x], i.e. the ideal
of polynomial functions that vanish at 0 ∈ A1. Then k[x](x) is the ring of all
fractions f(x)/g(x) such that g(x) 6∈ (x), i.e. such that g(0) 6= 0. Intuitively,
ring k[x](x) is the ring of functions on a very small “local” neighborhood of
0 ∈ A1 (although there is no Zariski neighborhood with this property).

Let us give a very concrete characterization of the localization:

LEMMA 9.1.10. Let f : R→ S−1R be the localization. Then
• f(s) is a unit for any s ∈ S.
• f(a) = 0 if and only if sa = 0 for some s ∈ S.
• any element of S−1R can be written as f(a)/f(s) for some a ∈ R, s ∈ S.

Conversely, if a homomorphism f : R→ A has these properties then A ' S−1R.

Proof. We have (s/1)(1/s) = 1 in S−1R. So f(s) is a unit. The fractions a/1
and 0/1 give the same element of S−1R if and only if sa = 0 for some s ∈ S,
by definition of S−1R.

Now suppose that a homomorphism f : R → A has these properties.
We construct a map g : S−1R→ A by formula g(r/s) = f(r)f(s)−1. This is
well-defined: if r/s = r′/s′ then t(s′r− sr′) = 0 for some t ∈ S. Applying a
homomorphism f gives

f(t)(f(s′)f(r)− f(s)f(r′)) = 0

in A, which implies that f(r)f(s)−1 = f(r′)f(s′)−1 because f(s), f(s′), and
f(t) are invertible. �

§9.2. Ideals in R and in S−1R. .
It is useful to understand the relationship between ideals ofR and S−1R.

DEFINITION 9.2.1. For any ideal I ⊂ R, let S−1I ⊂ S−1R be the subset of
fractions of the form x

s with x ∈ I . One checks immediately that S−1I is an
ideal. Namely, if xs ,

x′

s′ ∈ S
−1I then s′x+ sx′ ∈ I and therefore

x

s
+
x′

s′
=
s′x+ sx′

ss′
∈ S−1I.

And if r
t ∈ S

−1R then r
t
x
s = rx

ts ∈ S
−1I because rx ∈ I . The ideal S−1I is

called an extended ideal.
There is also a map in the opposite direction. Let f : R → S−1R be a

canonical map. If J ⊂ S−1R is an ideal then the ideal f−1(J) ⊂ R is called
a contracted ideal. Abusing notation, it is often denoted by J ∩R.

REMARK 9.2.2. One can define contraction and extension in a much more
general setting: if f : A→ B is any homomorphism of rings, the we have a
contraction map J 7→ f−1(J) from the set of ideals of B to the set of ideals
of A and the extension map I 7→ Bf(I) from the set of ideals of A to the
set of ideals of B, where Bf(I) is the minimal ideal in B containing f(I)
(which is almost never an ideal itself unless f is surjective).

PROPOSITION 9.2.3. We have the following properties:
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• The mapping I 7→ S−1I is 1 : 1 mapping of the set of all contracted ideals
of R (i.e. ideals of the form R ∩ J) to the set of all ideals of S−1R.
• Prime ideals of S−1R are in 1 : 1 correspondence (p↔ S−1p) with prime

ideals of R that don’t intersect S.

Proof. Let J ⊂ S−1R be an ideal and let r/s ∈ J . Then r = s(r/s) ∈ J , and
therefore r ∈ R ∩ J . It follows that J ⊂ S−1(R ∩ J). The other inclusion is
obvious, and so we have

J = S−1(R ∩ J).

This proves the first part.
For the second part, if I ⊂ R is any ideal that intersects S then S−1I =

R−1S is not proper. We claim that if p ⊂ R is a prime ideal that does not
intersect S then S−1p is also prime. Indeed, suppose we have

r

s

r′

s′
=
x

t
,

where x ∈ p. Then u(trr′ − xss′) = 0 for some u ∈ S. It follows that
trr′ − xss′ ∈ p, and therefore trr′ ∈ p. This implies that r or r′ is in p, i.e.
r
s or r′

s′ is in S−1p. In the other direction, if J ⊂ S−1R is a prime ideal then
R∩ J is also a prime ideal. This is true for any homomorphism f : A→ B:
if J ⊂ B is a prime ideal then B/J is a domain, and A/f−1(J) injects into
it, therefore A/f−1(J) is also a domain and therefore f−1(J) is a prime
ideal. �

LEMMA 9.2.4. Rp is a local ring with a maximal ideal extended from p.

Proof. We will use the following simple observation: If A is a local ring
with a maximal ideal m then any x 6∈ m is not contained in a proper ideal
and therefore is invertible. Elements in m are of course not invertible. And
the other way around, ifA∗ ⊂ A is the set of invertible elements (units) and
m = A\A∗ happens to be an ideal ofA thenA is a local ring with a maximal
ideal m, because any proper ideal does not intersect A∗.

Returning to Rp, let m be the extension of the ideal p. This is a proper
ideal by the previous proposition. But any element not in m has form r/s
with r, s 6∈ p, which is obviously invertible in Rp. So Rp is a local ring. �

§9.3. Spectrum and Nilradical.

DEFINITION 9.3.1. The set of all prime ideals of the ringR is called spectrum
and denoted by SpecR. For any homomorphism of rings A → B we have
a pull-back map f∗ : SpecB → SpecA defined as follows: f∗(p) = f−1(p)
for any prime ideal p ⊂ B.

PROPOSITION 9.3.2. Let R be a commutative ring. The intersection of all its
prime ideals is equal to the set of nilpotent elements (called the nilradical) of R:⋂

p∈SpecR

p = {x ∈ R |xn = 0 for some n > 0}.

Proof. If p is a prime ideal and xn = 0 for some n then xn ∈ p and therefore
x ∈ p. Now suppose that x is not nilpotent. Then

S = {1, x, x2, . . . }
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is a multiplicative system. Consider the localization S−1R and any maxi-
mal (and hence prime) ideal I of it. Then p = R ∩ I is a prime ideal of R
that does not intersect S, and therefore does not contain x. �

§9.4. Going-up Theorem.

THEOREM 9.4.1 (Going-up Theorem). Let A ⊂ B be rings and suppose that B
is integral over A. Then the pull-back map SpecB → SpecA is surjective.

Proof. We have to show that for any prime ideal p ⊂ A, there exists a prime
ideal q ⊂ B such that

p = q ∩A.
Let S ⊂ A be a complement of p. Localizing at S, we get a commutative
diagram

B > S−1B

A

∧

> Ap

∧
(14)

where the vertical arrows are inclusions. Notice that S−1B is integral over
Ap: if b ∈ B satisfies a monic equation

bn + a1b
n−1 + . . .+ an = 0

then b/s for s ∈ S satisfies a monic equation

(b/s)n + (a1/s)(b/s)n−1 + . . .+ (an/sn) = 0.

Suppose we can prove the theorem for Ap ⊂ S−1B. Then there exists a
prime ideal J of S−1B such that J∩Ap = S−1p. Let q = B∩J . We claim that
q restricts to p in A. This follows from commutativity of the diagram (14)
and the facts that J restricts to S−1p in Ap and S−1p restricts to p in A (by
Prop. 9.2.3).

So we reduced to the case when A is local with a maximal ideal m = p.
Let m′ ⊂ B be any maximal ideal. We claim that m′ ∩ A = m. In any case,
m′ ∩A ⊂ m because A is local. We have a commutative diagram

B > B/m′

A

∧

> A/(m′ ∩A)

∧

where the vertical arrows are inclusions. Notice thatB/m′ is a field integral
overA/(m′∩A). But thenA/(m′∩A) is a field (see the proof of Lemma 8.2.2
or Exercise 9 from the previous homework). So m′ ∩ A is a maximal ideal,
and therefore m′ ∩A = m. �

EXAMPLE 9.4.2. Let y = x2 and consider the embedding f : C[y] ↪→ C[x].
Since x satisfies the monic equation T 2 − y = 0, C[x] is integral over C[y]
and hence the going-up theorem applies. What does it mean geometri-
cally? There are two types of prime ideals of C[x]: the zero ideal obviously
restricts to the zero ideal of C[y]. Any other ideal is maximal and has the
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form (x− a) for a fixed a ∈ C. What does it restrict to? The ideal (x− a) is
the kernel of the homomorphism of C-algebras

C[x]→ C, x 7→ a,

so its pull-back f−1(x− a) is the kernel of the homomorphism

C[y] ↪→ C[x]→ C,

y 7→ x2 7→ a2.

So f∗(x − a) = (y − a2), i.e. geometrically f∗ is just the map A1
C → A1

C,
a 7→ a2. So in this case the going-up theorem is simply saying that any
complex number is a square.

EXAMPLE 9.4.3. Consider the embedding f : Z ↪→ Z[i]. Since i satisfies
the monic equation T 2 + 1 = 0, this is an integral extension. These rings
are PIDs, and non-zero prime ideals correspond to primes in Z and in Z[i]
(up-to association). So suppose γ ∈ Z[i] is prime and let p ∈ Z be a prime
such that (p) = (γ) ∩ Z. We have a commutative diagram

Z/(p) ⊂> Z[i]/(p)

Z[i]/(γ)
∨∨

⊂

>

Notice that the field extension Z/(p) ⊂ Z[i]/(γ) is generated by the image
of i in Z[i]/(γ), and consequently has degree 1 or 2 depending on whether
−1 is a square in Z/(p) or not. If−1 is not a square then the map Z[i]/(p)→
Z[i]/(γ) is an isomorphism (as both sets have p2 elements and this map is
surjective). Therefore, in this case (p) = (γ) and p = γ up to association. If
−1 is a square modulo p then Z[i]/(γ) has p elements, and therefore |γ| =√
p (draw a square in Z[i] with vector sides γ and iγ). It follows that γγ = p.

Since Z[i] is a PID, it follows that there are exactly two possibilities for γ,
unless γ and γ are associate, i.e. if γ/γ is a unit in Z[i]. There are just 4
units, ±1 and ±i, and it is easy to see that γ and γ are associate if and only
if γ = 1 + i (up to association).

Finally, it is very easy to see (using the fact that F∗p is cyclic) that−1 is not
a square modulo p if and only if p ≡ 3 mod 4.

So the full picture of the pull-back map is as follows:
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§9.5. Exercises.
In this worksheet, k denotes a field and R denotes a commutative ring.

Do not assume that k is algebraically closed unless otherwise stated.
1. Let S ⊂ R be a multiplicative system. Consider the covariant func-
tor Rings → Sets that sends a ring A to the set of all homomorphisms
f : R → A such that f(s) is a unit for any s ∈ S (describe its action of ho-
momorphisms A→ A′ yourself). Show that this functor is representable.
2. Show that a ring A is local if and only if its non-invertible elements form
an ideal.
3. Let f : A→ B be a homomorphism of rings. If I is an ideal of B then we
define its contraction as Ic = f−1(I). If I is an ideal of A then we define its
extension as Ie = Bf(I). (a) Is it true that any ideal of B is extended? (b)
Is it true that (Ic)e = I for any ideal I of B? (c) Show that the maps I → Ie

and I → Ic induce a bijection between the set of contracted ideals in A and
the set of extended ideals in B.
4. For any ideal I of R, let V (I) = {p ∈ SpecR | I ⊂ p}. (a) Show that
SpecR satisfies all axioms of a topological space with closed subsets V (I).
This topology is called Zariski topology. (b) Show that the pull-back f∗ :
SpecB → SpecA is continuous in Zariski topology.
5. Let S ⊂ R be a multiplicative subset and let f : R→ S−1R be a canonical
homomorphism. (a) Show that the pull-back map f∗ SpecS−1R → SpecR
is injective. (b) Let I ⊂ R be an ideal. Show that S−1

√
I =
√
S−1I .

6. Let p ⊂ R be a prime ideal. Show that the image of SpecRp in SpecR is
equal to the intersection of all open subsets in SpecR that contain a point p.
7. Let Σ be the set of all multiplicative subsets of R. Show that Σ contains
maximal (by inclusion) subsets and that S ∈ Σ is maximal if and only if
R \ S is a minimal prime ideal.
8. Describe (a) Spec Z/nZ; (b) Spec Z5 (5-adic numbers).
9. Let I ⊂ R be an ideal. Show that

√
I =

⋂
p∈Spec R

I⊂p

p.

10. Let
√

0 ⊂ R be the nil-radical. Show that the canonical pull-back map
SpecR/

√
0 → SpecR is a homeomorphism (first show that it is a bijection

of sets).
11. Suppose R is a direct product of rings R1 × . . .×Rk. Show that SpecR
is homeomorphic to the disjoint union of spectra SpecR1, . . . ,SpecRk.
12. (a) Show that the intersection of closed subsets ∩αV (Iα) of SpecR is
empty if and only if

∑
α Iα = R. (b) Show that SpecR is quasi-compact, i.e.

any open covering of SpecR has a finite sub-covering.
13. Let f : A → B be a homomorphism of rings. (a) Show that the pull-
back f∗ : MaxSpecB → MaxSpecA is not always well-defined. (b) If A
and B are finitely generated k-algebras then the pull-back for MaxSpec is
well-defined (do not assume that k is algebraically closed, although it helps
to consider this case first).
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14. Let J, I1, . . . , Ir be ideals of R such that J ⊂ I1 ∪ . . . ∪ Ir. Show that J
is in fact contained in one of the ideals Ik if any of the following conditions
are satisfied. (a) r = 2. (b) All ideals I1, . . . , Ir are prime (Hint: prove the
contrapositive statement by induction on r).
15. Let J, I1, . . . , Ir be ideals of R such that J ⊂ I1 ∪ . . . ∪ Ir. Show that J
is in fact contained in one of the ideals Ik if any of the following conditions
are satisfied. (a) At most two of the ideals I1, . . . , Ir are not prime. (b) R
contains an infinite field.

§10. GEOMETRY AND COMMUTATIVE ALGEBRA - II

§10.1. Localization as a functor ModR →ModS−1R.
Localization of rings R 7→ S−1R can be extended to localization of mod-

ules.

DEFINITION 10.1.1. Let M be an R-module. We define S−1M as the set of
equivalence classes of fractions m/s, where m ∈ M , s ∈ S, such that two
fractions m/s and m′/s′ are considered equivalent if there exists t ∈ S such
that

t(s′m− sm′) = 0.
(Note that even ifR is a domain, M can have elements annihilated by some
t ∈ S, so the standard cross-multipication definition has to be modified to
include t.) We make S−1M into an S−1R-module by declaring that r/s ∈
S−1R acts on m/t ∈ S−1M by sending it to (rm)/(st).

NOTATION 10.1.2. If p ∈ SpecR and S = R \ p then S−1M is denoted by
Mp.

What is the geometry behind this: rings correspond to spaces, modules
correspond to vector bundles (and more general quasi-coherent sheaves):
explain how (sections). Vector bundle is a “local concept” (we can restrict
vector bundles and their sections to open subsets) and localization makes
this procedure algebraic.

LEMMA 10.1.3. Localization is a functor

S−1· : ModR →ModS−1R .

In fact, localization of a module is a special case of extension of scalars:

S−1M ' S−1R⊗RM
and functors S−1· and S−1R⊗ · are naturally isomorphic.

Proof. Explain how S−1 acts on morphisms. For an isomorphism, we have
a bilinear map of R modules

S−1R×M → S−1M,

which induces an (obviously surjective) map of R-modules

ψ : S−1R⊗RM → S−1M,

Why is it injective? Any element of S−1R⊗RM has the form∑
i

(ri/si)⊗mi =
∑
i

(tiri/s)⊗mi =
∑
i

(1/s)⊗ tirimi = (1/s)⊗m,
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where s =
∏
i si. If 0 = ψ((1/s)⊗m) = (m/s) then tm = 0 for some t ∈ S.

But then
(1/s)⊗m = (t/ts)⊗m = (1/ts)⊗ tm = 0.

�

The localization functor has one very important and unusual property:

LEMMA 10.1.4. Localization is an exact functor.

Proof. We have already used that tensoring with anything is a right-exact
functor. So we only have to check that if i : M ↪→ N is an inclusion then
S−1i : S−1M → S−1N is an inclusion as well. Suppose S−1i(m/s) =
i(m)/s = 0 in S−1N . Then ti(m) = i(tm) = 0 for some t ∈ S. But then
tm = 0 in M and therefore m/s = 0 in S−1M . �

We see that if M is a submodule of N then we can view S−1M as a
submodule of S−1N .

§10.2. Nakayama’s Lemma. We are trying to translating geometric ideas
into algebra and vice versa by drawing not very rigorous but very useful
parallels, and also by developing the language of algebraic geomtry where
these parallels become rigorous.

Vector bundles on a space correspond to modules of a ring. In fact, lo-
cally a vector bundle is trivial, and so a vector bundle corresponds to a free
module.

More precisely, the category of vector bundles is not Abelian (roughly
speaking, the category is Abelian if objects and morphisms can be added,
kernels and cokernels exist and satisfy the first isomorphism theorem, di-
rect sums exists, and a bunch of other formal properties). Te problem here
is that cokernels dont’ exist. We can try to extend the category of vector
bundles to a category of coherent sheaves, in which cokernels always exist.

What will happen if we start with a category of free modules of finite
rank over a ring R and extend it to include all cokernels? We will get the
category of finitely presented modules. If the ring is Noetherian, we will
get the category of finitely generated modules (which in this case will be
an Abelian category).

One often needs to check that a bunch of sections s1, . . . , sn of a vector
bundle is its basis. For example, any tangent vector field can be written
locally as ∑

ai(x1, . . . , xn)
∂

∂xi
,

i.e. ∂
∂x1

, . . . , ∂
∂x1

is a basis of a tangent bundle (locally in the chart where the
coordinates {xi} are defined). In general, there is a simple and useful trick
for this: if s1(x0), . . . , sn(x0) is a basis of a fiber of a vector bundle at a point
x0 then sections form a basis in the neighborhood of this point. What is an
algebraic analogue of this principle?

Instead of the space X , we take a ring R. Instead of a vector bundle,
we take a finitely generated module M . We also have a bunch of elements
s1, . . . , sn. What is the analogue of the statement that they “generate the
fiber of a vector bundle at x0 ∈ X”? A point of X corresponds to a maxi-
mal ideal m ⊂ R. A section s that vanishes at a point x0 can be written as
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fs′, where f is a function such that f(x0) = 0. So “a fiber at x0” corresponds
to M/mM . So we assume that cosets of s1, . . . , sn in M/mM generate this
module, i.e. that M = Rs1 + . . . + Rsn + mM . Finally, we are not really
claiming that s1, . . . , sn should generate M but rather that they will gener-
ate M “locally”. So we are going to localize R at m, or even just assume
from the beginning that R is local with a maximal ideal m. So we get

LEMMA 10.2.1 (Nakayama’s Lemma). Let R be a local ring with a maximal
ideal m and let M be a finitely generated R-module with elements s1, . . . , sn. If
this elements generate M modulo mM then in fact they generate M .

Here is a more eloquent formulation of the same idea:

LEMMA 10.2.2 (Nakayama’s Lemma). Let R be a local ring with a maximal
ideal m and let M be a finitely generated R-module. If mM = M then M = 0.

To deduce the previous version of Nakayama, let N be a submodule of
M generated by s1, . . . , sn. Then we are given that M = N + mM , i.e. that
M/N = m(M/N). We deduce that M/N = 0, i.e. that M = N .

Remember a “determinant” trick we used to show that x ∈ B is integral
over a subring A ⊂ B if and only if x is contained in a finitely generated A-
submodule of B? The proof of Nakayama’s lemma is another application
of the same idea.

Proof. We will prove a slightly more general result. Let R be any ring and
let M be a finitely generated R-module. If I is an ideal contained in all
maximal ideals and IM = M then M = 0.

Let m1, . . . ,mk be generators of M . Then we have

mi =
∑

aijmj ,

where aij ∈ I . Then ∑
j

(δij − aij)mj = 0

for any i. Multiplying by the adjoint matrix, we see that

amj = 0

for any j, where a = det(δij − aij). Notice that a can be written as 1 +
x, where x ∈ I . We claim that a is invertible. If not, then it belongs to
some ideal and therefore belongs to some maximal ideal m ⊂ R. But x also
belongs to this ideal, and therefore 1 ∈ m, a contradiction. It follows that a
is invertible and therefore

mj = a−1(amj) = 0

for any j, i.e. M = 0. �

§10.3. Spec and MaxSpec. Irreducible Algebraic Sets. Let k = k̄ and let
R be the algebra of polynomials in n variables over k. R is the ring of
functions on the affine space An

k . Weak Nullstellensatz identifies points of
An with maximal ideals in R (of polynomials that vanish at these points).
We have a Zariski topology on An with closed sets

V (I) = {x ∈ An | f(x) = 0 for any f ∈ I}
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for any ideal I ⊂ R (in fact strong Nullstellensatz gives a bijection between
closed subsets of An and radical ideals of R). In the language of MaxSpec,
the Zariski topology looks as follows:

V (I) = {m ∈ MaxSpecR | I ⊂ m}.
So we see that the Zariski topology on An is the restriction of Zariski topol-
ogy on SpecR, which is defined in exactly the same way. But now the
question is, how to locate other points of SpecR in An?

EXAMPLE 10.3.1. Let R = k[x]. The only prime ideal in R that is not maxi-
mal is (0), i.e.

SpecR = A1
k ∪ η, where η = (0)

in this case. This point η has a remarkable property: it is not closed! In fact,
the only ideal contained in (0) is (0) itself, and so

η̄ = V (0) = SpecR!

Draw a picture of a fuzzy point η.

EXAMPLE 10.3.2. Let R = k[x, y]. The prime ideals of R are
• maximal ideals (x− a, y − b);
• ideals (f), where f ∈ k[x, y] is an irreducible polynomial;
• (0).

The corresponding closed algebraic sets are
• points (a, b) ∈ A2;
• curves f = 0, where f ∈ k[x, y] is an irreducible polynomial;
• A2.

Draw a picture of Spec k[x, y].

Let’s consider the general case.

DEFINITION 10.3.3. A subset of a topological space is called irreducible if it
is not a union of two proper closed subsets.

What are the irreducible subsets of Rn in the usual Euclidean topology?
Not so in Zariski topology!

LEMMA 10.3.4. Irreducible subsets of An bijectively Y → I(Y ) correspond to
prime ideals of R. For any p ∈ SpecR,

p ∩MaxSpecR = V (p).

Proof. Suppose Y ⊂ An is a reducible subset, Y = Y1 ∪ Y2 = V (I1) ∪ V (I2).
Then there exist f ∈ I1 and g ∈ I2 that do not vanish identically on Y , i.e.
they do not belong to I(Y ). However, clearly fg ∈ I(Y ). This shows that
I(Y ) is not prime.

If I = I(Y ) is not prime then take f, g ∈ R \ I such that fg ∈ I . Then f
or g vanishes at any point of Y , i.e. Y can be decomposed as

(Y ∩ V (f)) ∪ (Y ∩ V (g))

The last part is obvious. �

This gives us another way of thinking about An: this is the set of closed
points in SpecR.
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DEFINITION 10.3.5. Let Y ⊂ An be a closed algebraic subset. Maximal (by
inclusion) irreducible subsets of Y are called its irreducible components.

THEOREM 10.3.6. Let Y ⊂ An
k be a Zariski closed subset. Then Y has only finitely

many irreducible components Y1, . . . , Yn and we have

Y = Y1 ∪ . . . ∪ Yn.

Proof. It suffices to prove that Y can be written as a finite union of irre-
ducible subsets Z1, . . . , Zr. Indeed, by throwing away subsets contained in
other subsets we will reduce to the case Zi 6⊂ Zj for i 6= j. If Z ⊂ Y is
any subset then Z = (Z ∩ Z1) ∪ . . . (Z ∩ Zr), and so if Z is irreducible then
it is contained in one of the Zi’s and therefore Zi’s are exactly irreducible
components of Y .

Let’s prove the claim. If Y is irreducible then there is nothing to do. If
Y = Y1 ∪ Y2 then we can start breaking Y1 and Y2 into irreducible compo-
nents. We claim that this process sooner or later stops. If it does not then
we will produce the chain of closed subsets

Y = Y 1 ⊃ Y 2 ⊃ Y 3 ⊃ . . .
where Y i 6= Y i+1. But then

I(Y 1) ⊂ I(Y 2) ⊂ I(Y 3) ⊂ . . .
is an increasing chain of ideals, which contradicts the Hilbert basis theorem
(the ring of polynomials is Noetherian). �

§10.4. Morphisms of Algebraic Sets. Let k = k̄ be an algebraically closed
field. If Y ⊂ An

k is a closed algebraic set then we have the algebra of “re-
strictions of polynomial functions”

O(Y ) = k[x1, . . . , xn]/I(Y ).

Notice that Y is irreducible if and only if O(Y ) is a domain.
Now suppose we have two algebraic sets,

Y1 ⊂ An
x1,...,xn

and Y1 ⊂ Am
y1,...,ym

(subscripts indicate variables). What are the “maps” from Y1 to Y2?

DEFINITION 10.4.1. A map α : Y1 → Y2 is called a morphism if α is a restric-
tion of the polynomial map

An
x1,...,xn

→ Am
y1,...,ym

, yi = fi(x1, . . . , xn),

i.e. if there exists m polynomials f1, . . . , fm in variables x1, . . . , xn such that

α(a1, . . . , an) = (f1(a1, . . . , an), . . . f1(a1, . . . , an))

for any point (a1, . . . , an) ∈ Y1.

EXAMPLE 10.4.2. The map
t 7→ (t2, t3)

is a morphism from A1 to the cusp (x3 = y2) ⊂ A2.

EXAMPLE 10.4.3. We have a map from A1
t to the parabola X = {y = x2} ⊂

A2, t 7→ (t, t2) and the map X → A1 given by (x, y) 7→ x. This maps are
inverses of each other.
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For any morphism α : Y1 → Y2, we can define a pull-back map

α∗ : O(Y2)→ O(Y1).

Let f ∈ O(Y2) and let a ∈ Y1 then we simply define

(α∗f)(a) = f(α(a)).

To show that α∗f ∈ O(Y1), we have to show that it is a restriction of the
polynomial function on An. But indeed, let f be a restriction of the polyno-
mial f̄ ∈ k[y1, . . . , ym]. Then α∗(f) is the restriction of the function

f̄(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

which is obviously a polynomial.

EXAMPLE 10.4.4. For the map

α : A1 → X = (x3 = y2) ⊂ A2, t 7→ (t2, t3),

we have O(X) = k[x, y]/(x3 − y2), and

α∗ : k[x, y]/(x3 − y2)→ k[t], x 7→ t2, y 7→ t3.

EXAMPLE 10.4.5. The bijections between A1 and the parabola X = {y =
x2} ⊂ A2 discussed above induce isomorphisms

O(X) = k[x, y]/(y − x2) ' k[t] = O(A1), (x 7→ t, y 7→ t2), (t 7→ x).

THEOREM 10.4.6. We have a contravariant functor Y 7→ O(Y ) from the cate-
gory of closed algebraic sets to the category of finitely generated k-algebras without
nilpotents. This functor is an equivalence of categories.

Proof. Since I(Y ) is a radical ideal,O(Y ) has no nilpotents. It is finitely gen-
erated as the quotient of a polynomial algebra in finitely many variables. It
is clear that α∗ is a homomorphism of k-algebras. So we have our functor.

Why is it an equivalence of categories? We have to check two things.
Firstly, we have to check that it is essentially surjective. If R is a finitely
generated k-algebra without nilpotents then we can write

R = k[x1, . . . , xn]/I,

where I is a radical ideal. Let

X = V (I) ⊂ An.

By Nullstellensatz, I = I(X). So any finitely generated algebra without
nilpotents is isomorphic to one of the form O(X).

Secondly, we have to check that it is fully faithful, i.e.

Mor(Y1, Y2) = Hom(O(Y2),O(Y1)).

If α : Y1 → Y2 is a morphism and

α(a1, . . . , an) = (b1, . . . , bm)

for some (a1, . . . , an) ∈ Y1 Then bi = α∗(yi)(a1, . . . , an). So we can recover
α from α∗. Finally, let

F : O(Y2)→ O(Y1)
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be a homomorphism. We have to realize it as a pull-back homomorphism
for some morphism of algebraic sets. For each i = 1, . . . ,m choose a repre-
sentative fi ∈ k[x1, . . . , xn] of a coset F (yi) and consider a morphism

α : An → Am

given by these polynomials. We claim that α(Y1) ⊂ Y2. It suffices to check
that any polynomial f ∈ I(Y2) vanishes on α(Y1). In other words, the
claim is that f(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) vanishes on Y1. But this
polynomial is equal to F (f), which belongs to I(Y1). �

§10.5. Dominant morphisms. Let’s translate some geometry into algebra.

DEFINITION 10.5.1. A morphism α : Y1 → Y2 of algebraic sets is called
dominant if its image is Zariski dense in Y2.

EXAMPLE 10.5.2. Consider a projection from the hyperbola xy = 1 to the
x-axis. The image misses only 0 ∈ A1, and so this map is dominant. What
can we say about the pull-back homomorphism? It is

k[x]→ k[x, y]/(xy = 1) = k[x,
1
x

], x 7→ x.

Notice that it is injective. This is not a coincidence.

PROPOSITION 10.5.3. α : Y1 → Y2 is dominant if and only if α∗ is injective.

Proof. Suppose α is dominant. Let f ∈ Kerα∗. Then f(α(a)) = 0 for any
a ∈ Y1, i.e. αmaps Y1 to a closed subset V (f)∩Y2. But α(Y1) = Y2, therefore
V (f) ∩ Y2 = Y2, i.e. f vanishes on Y2 identically, i.e. f = 0.

Suppose α is not dominant. Then α(Y1) is a proper closed subset of Y2,
and therefore there exists f ∈ O(Y2), f 6= 0, such that α(Y1) ⊂ V (f). But
then α∗(f) = 0, i.e. Kerα∗ 6= 0. �

§10.6. Finite Morphisms. Now let’s translate some algebra into geometry.

DEFINITION 10.6.1. A morphism of algebraic sets X → Y is called finite if
O(X) is integrally closed over O(Y ) by the pull-back map.

THEOREM 10.6.2. Suppose α : X → Y is a dominant finite morphism. Then α
is surjective and has finite fibers.

EXAMPLE 10.6.3. Notice that this gives a beautiful (and very useful) way to
reformulate Noether’s normalization lemma: any affine algebraic set ad-
mits a finite morphism to An for some n.

Proof. Let A = O(X) and let B = O(Y ). By Lemma 10.5.3, B ⊂ A and A is
integral over B. Let x ∈ Y . It corresponds to a maximal ideal m ⊂ B. To
show that α is surjective, we have to check that there exists a maximal ideal
n ⊂ A such that n ∩ B = m and to show that α has finite fibers, we have
to check that there are finitely many possible n’s. By the going-up theorem,
we can find a prime ideal p ⊂ A such that p ∩ B = m. But then A/p is
a domain integral over a field k = B/m, so as we have seen many times
already A/p = k (here we are using that k is algebraically closed, otherwise
we will get a finite extension of k), and therefore p is in fact a maximal ideal.
Moreover, we see that there is a bijection between n’s and maximal ideals
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of the algebra A/Am. The latter algebra is integral over B/m = k, and so
is a finitely generated k-module, i.e. a finite-dimensional vector space. In
particular, A/Am is Artinian, i.e. satisfies descending chain condition for
modules. So it is enough to prove the following more general lemma. �

LEMMA 10.6.4. Any Artinian ring R has the following properties:
• Any prime ideal of R is maximal.
• R has only finitely many maximal ideals.

Proof. For the first statement, if p ⊂ R is a prime ideal then R/p is an Ar-
tinian domain, which must be a field: for any x ∈ R/p, the sequence

(x) ⊃ (x2) ⊃ (x3) ⊃ . . .

stabilizes, and therefore xn = xn+1y for some n, y ∈ R/p, but this implies
1 = xy. So p is maximal.

For the second statement, consider the set of finite intersections of maxi-
mal ideals. By d.c.c, this set has the minimal element, i.e. there exist maxi-
mal ideals m1, . . . ,mr ⊂ R such that

m ∩m1 ∩ . . . ∩mr = m1 ∩ . . . ∩mr

for any maximal ideal m, in particular

m1 ∩ . . . ∩mr ⊂ m.

We claim that this implies that m = mi for some i. If not, then each mi

contains xi such that xi 6∈ m. But then

x1 . . . xr ∈ m1 ∩ . . . ∩mr ⊂ m,

and since m is prime, one of the xi’s is contained in m. �

§10.7. Exercises.
In this worksheet R is a ring and k = k̄ is an algebraically closed field.

1. Let f, g ∈ k[x1, . . . , xn] be polynomials such that f is irreducible and
V (f) ⊂ V (g). Show that f divides g.
2. Let α : A2 → A2 be a morphism given by polynomials f and g in k[x, y].
(a) Show that if α is an isomorphism then the polynomial

det

[
∂f(x,y)
∂x

∂g(x,y)
∂x

∂f(x,y)
∂y

∂g(x,y)
∂y

]
is a nonzero constant (the converse of this is a famous open problem).
(b) Give an example when α is an isomorphism but polynomials f, g are
not both linear polynomials.
3. Let X ⊂ A2 be defined by equations x2 + y2 = 1 and x = 1. Is it true that
I(X) = (f, g)?
4. (a) Let X ⊂ A2 be a cuspidal cubic x2 = y3. Let f : A1 → X be defined
by formulas t 7→ (t3, t2). Is it an isomorphism? (b) Is a hyperbola xy = 1
isomorphic to A1?
5. Consider the morphism A2 → A2 defined by formulas (x, y) 7→ (x, xy).
Is the image Zariski closed? Zariski open? Zariski dense?
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6. Show that the category of irreducible algebraic sets and morphisms be-
tween them is equivalent to the category of finitely generated k-algebras
without zero-divisors and homomorphisms between them.
7. Consider the morphism α : A1 → An given by t 7→ (t, t2, . . . , tn). Show
that α induces an isomorphism between A1 and V (I), where I is generated
by 2× 2 minors of the following matrix[

1 x1 x2 . . . xn−1

x1 x2 x3 . . . xn

]
In the problems 8–11, let S be a multiplicative system in R.

8. Let M1 and M2 be submodules of an R-module N . Show that

(a) (S−1M1) + (S−1M2) = S−1(M1 +M2);

(b) (S−1M1) ∩ (S−1M2) = S−1(M1 ∩M2);
(c) if M1 ⊃M2 then S−1(M1/M2) ' (S−1M1)/(S−1M2).

9. Let M be a finitely generated R-module. Let AnnM = {r ∈ R | rM = 0}.
Show that

S−1(AnnM) ' Ann(S−1M).

10. Let M1 and M2 be R-modules. Show that

S−1(M1 ⊗RM2) ' (S−1M1)⊗S−1R (S−1M2).

11. Show that the nilradical of S−1R is isomorphic to the localization of the
nilradical of R.
12. (a) Let M be an R-module. Show that M = 0 if and only if Mm = 0 for
any maximal ideal m ⊂ R. (b) The ring is called reduced if its nilradical is
trivial. Show that the ring R is reduced if and only if Rp s reduced for any
prime ideal p ⊂ R.
13. Let R be an integral domain. For any R-module M , let

T (M) = {x ∈M | rx = 0 for some r ∈ R}
be the torsion submodule of M . (a) Show that M → T (M) is a left-exact
functor ModR →ModR. (b) Show that T (M) = 0 if and only if T (M)m = 0
for any maximal ideal p ⊂ R.
14. Let R be a local Noetherian ring with a maximal ideal m. Show that⋂

n≥1

mn = 0.

15. Show that the Nakayama’s lemma fails if the module M is not assumed
to be finitely generated.
16. Let M and N be finitely generated modules over a local ring R. Show
that if M ⊗R N = 0 then M = 0 or N = 0.
17. For any f ∈ R, let D(f) ⊂ SpecR be the complement of the closed
set V (f). (a) Show that sets D(f) form a base of Zariski topology, i.e. any
Zariski open subset of SpecR can be expressed as a union of open sets of
the form D(f). (b) Show that if D(f) = D(g) then R[1/f ] ' R[1/g].
18. Let x, y ∈ SpecR. (a) Show that there exists either a neighborhood of
x that does not contain y or a neighborhood of y that does not contain x.
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(b) Show that the nilradical of R is a prime ideal if and only if SpecR con-
tains a “generic point” η such that η̄ = SpecR.
19. For any p ∈ SpecR, let k(p) be the quotient field of R/p. This field is
called the residue field at p. (a) Show that

k(p) ' Rp/pRp.

(b) Let M be a finitely-generated R-module. The k(p)-vector space

M ⊗R k(p)

is called the fiber of M at p. Show that if M ⊗R k(p) = 0 for any p ∈ SpecR
then M = 0. (c) Let R = Z and let M be a finitely generated Abelian group.
Compute all fibers of M on SpecZ and verify (b) in this case.

§11. REPRESENTATION THEORY OF FINITE GROUPS

§11.1. Representations of Finite Groups. Let G be a group and let k be
a field. The goal of representation theory is to add dynamics to a static
definition of an abstract group by looking at its various matrix realizations.

DEFINITION 11.1.1. A representation of G is a homomorphism

ρ : G→ GL(V ),

where V is a k-vector space. A representation is called faithful if ρ is injec-
tive. It is called trivial if ρ(G) = {e}.

There are many ways to rephrase the definition. For example, a group G
will act on V by a formula

g · v = ρ(g)v, g ∈ G, v ∈ V,
and this action is linear, i.e. any g ∈ G acts on V by linear operators. It is
clear that any linear action of G on V is given by some representation.

We will only consider the case when G is a finite group and V is a finite-
dimensional vector space. Very often one has interesting infinite dimen-
sional representations: for example if the group G acts on the space X then
it in fact acts linearly on its space of functions by a formula

(g · f)(x) = f(g−1(x)).

The space of functions is usually infinite-dimensional. But for finite groups
we won’t loose much by concentrating on finite-dimensional representa-
tions.

EXAMPLE 11.1.2. The symmetric group Sn acts linearly on kn by permuting
n basis vectors. The corresponding representation Sn → GLn(k) is faithful
and any σ ∈ Sn is represented by a permutation matrix. This representation
can be used to define the sign of a permutation:

sgn(σ) = det ρ(σ).

Since ρ is a homomorphism Sn → GLn(k), and det is a homomorphism
GLn(k) → k∗, we see that sgn is a homomorphism Sn → k∗. One can
quickly check that sgn is equal to (−1)a, where a is a number of transposi-
tions needed to write σ. This is the usual definition of the sign, but then one
has to work to show that it is well-defined, i.e. does not depend on how we
write a permutation as a product of transpositions.
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EXAMPLE 11.1.3. Many groups are described as groups of symmetries of
geometric objects, in which case one often has a representation. For exam-
ple, the dihedral group Dn is the group of symmetries of a regular n-gon.
Choosing a cartesian coordinate system with the origin in the center of the
n-gon allows to write any g ∈ Dn as an orthogonal transformation (in fact
a rotation or a symmetry). So we have a faithful representation

Dn → O2(R) ⊂ GL2(R).

Analogously, we can consider symmetries of polytopes in R3. For example,
it is known that the group of rotations of an icosahedron is isomorphic to
A5, which gives a faithful representation

A5 → O3(R) ⊂ GL3(R).

EXAMPLE 11.1.4 (Finite groups of Lie type). The group GL2(Fq) by defini-
tion has a 2-dimensional representation over Fq. Representations in charac-
teristic p, especially over finite fields, are known as modular representation.
Of course GL2(Fq) also has representations in characteristic 0. For example,
it is easy to see that GL2(Fq) has 6 elements and permutes three non-zero
vectors of (F2)2. Therefore, it is isomorphic to S3 and has a 3-dimensional
representation in k3 by permuting basis vectors described above.

EXAMPLE 11.1.5. Let F/K be a finite Galois extension with Galois group G.
Then G acts on F and this action is K-linear:

g(kf) = g(k)g(f) = kg(f)

. So if we consider F as an n-dimensional vector space over K (where
remember that n = |G|), we get a faithful representation

G→ GLn(K).

EXAMPLE 11.1.6. Let G be any finite group. Perhaps its most important
representation is the regular representation defined as follows. Let k[G] be
a vector space with a basis indexed by elements of G. In other words, we
have

k[G] =

∑
g∈G

agg | ag ∈ k


We extend the action of G on itself by left multiplication to a representation
of G on k[G]:

g0

∑
g∈G

agg

 =
∑
g∈G

ag(g0g)

In fact, the two last examples are related:

THEOREM 11.1.7 (Normal Basis Theorem). Let F/K be a finite Galois exten-
sion with a Galois group G. Then the action of G on F is isomorphic to the regular
representation of G.

This is called a normal basis because it implies (and means) that F has a
basis over K which is indexed by elements of the Galois group, and such
that the Galois group permutes them accordingly.
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§11.2. Category of Representations. We can define the category Repk(G)
of representations of G as follows. Its objects are representations of G. Its
morphisms are linear maps

L : V1 → V2

which commute with the action of the group:

L(gv) = gL(v)

for any g ∈ G, v ∈ V1. This linear maps are also known as equivariant maps.
The goal is to describe this category as explicitly as possible, i.e. to classify
all representations and all morphisms.

In the first approximation, this is accomplished by Maschke’s theorem
and Schur’s Lemma, respectively. They are discussed below. But first we
need a definition:

DEFINITION 11.2.1. A representation of G in V is called irreducible if V has
no proper G-invariant subspaces, i.e. sub-representations.

DEFINITION 11.2.2. A direct sum of representations G : V1 and G : V2 is
a direct sum of vector spaces V1 ⊕ V2 equipped with a component-wise
action of G: g(v1, v2) = (gv1, gv2). In other words, the matrix of g is block-
diagonal, with blocks that correspond to V1 and V2.

A basic question is whether any representation is isomorphic to a direct
sum of irreducibles. Here are two standard examples.

EXAMPLE 11.2.3. The standard representation of Sn in kn has two sub-representations:

V1 = k(e1 + . . .+ en) and V2 = {
∑

aiei |
∑

ai = 0}.

It is easy to see that kn = V1 ⊕ V2 and that both of them are irreducible.

EXAMPLE 11.2.4. Consider a subgroup

G =
[

1 ∗
0 ∗ 1

]
⊂ GL2(Fq)

and its representation in (Fq)2. ThenG has only one proper sub-representation,
namely a subspace spanned by e1. So (Fq)2 does not split as a direct sum of
irreducibles.

Now the result:

THEOREM 11.2.5 (Maschke). Suppose char k does not divide |G|. Then any rep-
resentation V of G is a direct sum of its irreducible sub-representations.

Proof. Arguing by induction on dimV , it suffices to prove the following: if
U ⊂ V is a G-invariant subspace then there exists a G-invariant subspace
U ′ such that V = U ⊕ U ′. We will give two possible arguments.

For the first one, let’s choose a complementary vector subspace W and let
π : V → V be a projector on U along W , i.e. Kerπ = W and π|U = Id |U .
We are going to average π, namely consider the linear operator π0 : V → V
defined as follows:

π0(v) =
1
|G|

∑
g∈G

gπ(g−1v)
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(here we use that |G| is coprime to characteristic). The main calculation is

π0(hv) =
1
|G|

∑
g∈G

gπ(g−1hv) =
1
|G|

∑
g∈G

h(h−1g)π((h−1g)−1v) =

h
1
|G|

∑
g∈G

(h−1g)π((h−1g)−1v) = h
1
|G|

∑
g∈G

gπ(g−1v) = hπ0,

i.e. π0 is equivariant. It follows that

U ′ = Kerπ0

is G-invariant. Since it is easy to check that

π0|U = Id |U ,

this gives V = U ⊕ U ′, a direct sum of G-invariant subspaces.
The second argument only works if k = R or C. In this case let (·, ·) be

an inner product on V and let’s define another one by formula

(v, v′)0 =
1
|G|

∑
g∈G

(gv, gv′).

Any positive linear combination of inner products is an inner product, and
it is easy to check that (·, ·)0 is G-invariant (i.e. (gv, gv′)0 = (v, v′)0). If
U ⊂ V is a G-invariant subspace, we can just take U ′ to be an orthogo-
nal complement of U : equivariance of (v, v′)0 then implies that U ′ is G-
invariant. �

REMARK 11.2.6. The Maschke’s theorem is sometimes expressed by say-
ing that Repk(G) is a “semi-simple category”. This means that each object
is “semi-simple”, i.e. isomorphic to a direct sum of simple objects (where
simple=irreducible). One also says that any representation of a finite group
(with char k coprime to |G|) is “completely reducible”, i.e. isomorphic to a
direct sum of irreducibles.

Next we understand morphisms in Repk(G). To simplify things, let’s fix
an irreducible representation V and consider the algebra of all morphisms
from V to itself:

EndG(V ) = {L ∈ Homk(V, V ) |L(gv) = gL(v)}

(the multiplication in EndG(V ) is just the composition of endomorphisms).
So EndG(V ) is a subalgebra of the matrix algebra Homk(V, V ).

LEMMA 11.2.7 (Schur). EndG(V ) is a division algebra, i.e. any non-zero element
of it is invertible. If k = k̄ then EndG(V ) = k is a subalgebra of scalar operators
in Homk(V, V ).

Proof. Let L ∈ EndG(V ). Then it is easy to check that KerL and ImL are
G-invariant subspaces of V . Since V is irreducible, we conclude that either
L = 0 or L is invertible. So EndG(V ) is a division algebra.

Now suppose that k = k̄. We can give two proofs. For the first one, let λ
be an eigenvalue of L and let

Vλ = {v ∈ V |Lv = λv}



92 JENIA TEVELEV

be the corresponding eigenspace. We claim that Vλ is G-invariant: indeed
if v ∈ Vλ then

L(gv) = gL(v) = g(λv) = λ(gv),
and so gv ∈ Vλ. Since V is irreducible and Vλ 6= 0, it follows that Vλ = V ,
i.e. L acts on V by multiplication by λ.

For the second proof, notice that EndG(V ) obviously contains k as a sub-
algebra of scalar operators. Moreover, these scalar operators commute with
anything in EndG(V ), i.e. k belongs to the center of EndG(V ). So we can
try to argue that in fact if k = k̄ then k is the only division algebra finite-
dimensional over k and such that k is contained in its center. Indeed, let
D be such an algebra and let α ∈ D. Let k(α) be the minimal division
subalgebra containing k and α. Since k and α commute, k(α) is in fact a
field. This field is finite-dimensional over k, hence algebraic over k, but k
is algebraically closed, and so in fact α ∈ k. �

We see that if k is not algebraically closed then irreducible representa-
tions can be classified by a type of a division algebra that appears as its
algebra of endomorphisms. For example, suppose k = R. By a Theorem of
Frobenius, finite-dimensional division algebras over R are R, C, and quater-
nions H. All these cases occur.

EXAMPLE 11.2.8. Let Cn be a cyclic group with n elements and consider its
representation in R2 as the group of rotations of a regular n-gon. No lines
in R2 are invariant under this action, so this representation is irreducible.
It is easy to check that the algebra of endomorphisms in this case is C. In
fact, identifying R2 with C in the standard way, Cn acts by multiplication
by n-th roots on unity, and C acts simply by left multiplication. These two
actions obviously commute.

EXAMPLE 11.2.9. Let Q8 = {±1,±i,±j,±k} be the group of 8 quaternions.
It acts on all quaternions H by left multiplication. This gives an irreducible
4-dimensional real representation (H ' R4). Its equivariant endomorphisms
are equal to H with the action on itself by right multiplication (notice that
left multiplications by Q8 and H do not commute!).

§11.3. Irreducible Representations of Abelian Groups. Our next goal is
to gather more specific information about irreducible representations. For
example, we can ask how many of them are there, what are their dimen-
sions, etc. This is going to depend on the field. To simplify matters, we are
going to assume that k is algebraically closed.

We start with Abelian groups.

LEMMA 11.3.1. Let G be an Abelian group. Then any irreducible representation
of G is 1-dimensional and is given by some homomorphism G→ GL(k) = k∗.

Proof. Let ρ : G → GL(V ) be an irrep. For any g0 ∈ G, ρ(g0) belongs to
EndG(V ). Indeed,

ρ(g0)(gv) = ρ(g0g)(v) = ρ(gg0)(v) = gρ(g0)v.

By Schur’s Lemma, ρ(g0) must be a scalar linear operator. So G acts by
scalar operators, and therefore any vector subspace is G-invariant. It fol-
lows that dimV = 1. �
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To classify all irreducible representations, we introduce the following
definition.

DEFINITION 11.3.2. Let G be a finite Abelian group. Its Pontryagin dual
group Ĝ is the group of all homomorphisms φ : G → k∗ with the mul-
tiplication given by

(φψ)(g) = φ(g)ψ(g).
The unit element in this group is the trivial homomorphism G→ {1} ∈ k∗.

So irreducible representations of G are classified by elements of Ĝ.

LEMMA 11.3.3. Let G be a finite Abelian group. Suppose char k is coprime to |G|.
Then Ĝ is non-canonically isomorphic to G, in particular |G| = |Ĝ| and so G has
|G| irreducible 1-dimensional representations. The map

g → [φ 7→ φ(g)]

is a canonical isomorphism between G and ˆ̂
G.

Proof. Notice that Ĝ1 ×G2 ' Ĝ1×Ĝ2 Indeed, a homomorphismG1×G2 →
k∗ is uniquely determined by its restrictions on G1, G2. And given homo-
morphisms φ1 : G1 → k∗, φ2 : G2 → k∗, we can define a homomorphism
φ : G1 ×G2 → k∗ by formula φ(g1, g2) = φ1(g1)φ2(g2).

By the fundamental theorem on Abelian groups, we therefore can as-
sume that G ' Z/nZ is cyclic. A homomorphism Z/nZ→ k∗ sends 1 to an
n-th root of unity. So we see that Ẑ/nZ = µn. But char k is coprime to |G|,
ad therefore coprime to n. So |µn| = n and µn, as any finite subgroup of k∗,
is cyclic. This shows the first statement.

Finally, we claim that G is canonically isomorphic to its double dual.
Since they have the same number of elements, it suffices to show that the
map g → [φ 7→ φ(g)] is injective. If it is not, then any homomorphism
φ : G → k∗ vanishes on some g ∈ G. But then Ĝ can be identified with
Ĝ/〈g〉, and in particular |Ĝ| < |G|, which is a contradiction. �

EXAMPLE 11.3.4. Let’s classify all complex representations of Z/7Z. We
have

Ẑ/7Z = µ7,

the group of 7-th roots of unity in C∗. For each root η = e
2pi
7
k, the corre-

sponding representation is

Z/7Z→ C∗, i 7→ ηi.

It is also very easy to classify all 1-dimensional representations of an
arbitrary group G.

DEFINITION 11.3.5. For any g, h ∈ G, the element ghg−1h−1 is called their
commutator. Let [G,G] be the subgroup of G generated by all commuta-
tors. It is called a commutant of G.

LEMMA 11.3.6. The commutant [G,G] is a normal subgroup of G and G/[G,G]
is Abelian. Moreover, if H is normal in G and G/H is Abelian then H ⊃
[G,G]. There is a natural bijection between 1-dimensional representations of G,
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i.e. homomorphisms G → k∗, and 1-dimensional representations of G/[G,G],
i.e. ̂G/[G,G].

Proof. The basic calculation is

a(ghg−1h−1)a−1 = (aga−1)(aha−1)(aga−1)−1(aha−1)−1,

i.e. the set of all commutators is preserved by inner automorphisms. It
follows that [G,G] is preserved by inner automorphisms, i.e. [G,G] is a
normal subgroup. For any cosets g[G,G], h[G,G], their commutator is

ghg−1h−1[G,G] = [G,G],

i.e. G/[G,G] s Abelian.
If f : G→ G′ is a homomorphism then [G,G] is obviously mapped into

[G′, G′]. It follows that if G′ is Abelian then [G,G] is contained in Ker f .
In particular, there is a bijection between homomorphisms G → k∗ and
(G/[G,G])→ k∗. �

For example, let’s take Sn. It is not hard to check that [Sn, Sn] = An, and
therefore Sn has 2 1-dimensional representations. One is a trivial represen-
tation,

Sn → k∗, g 7→ 1.
Another is the sign representation,

Sn → k∗, g 7→ sgn(g).

§11.4. Characters.
From now on we are going to work over C. The reason for this is that

we are going to use Hermitian inner products, which are not available over
arbitrary fields. However, all results that we prove can be proved over ar-
bitrary algebraically closed fields of characteristic not dividing |G| by using
slightly more abstract methods.

DEFINITION 11.4.1. Let ρ : G → GL(V ) be a representation of G. Its char-
acter χ is a function G→ C defined as follows:

χ(x) = Tr ρ(x)

for any x ∈ G.

Recall that C[G] denotes the space of formal linear combinations
∑

g∈G ag[g],
which we frequently interpret as functionsG→ C, g 7→ ag. So we can think
about each character as an element of C[G]. In fact, we can say more.

DEFINITION 11.4.2. An function G → C is called a class function if it is con-
stant on conjugacy classes.

LEMMA 11.4.3. Each character is a class function.

Proof. Indeed,

χ(hgh−1) = Tr ρ(hgh−1) = Tr ρ(h)ρ(g)ρ(h)−1 = Tr ρ(g) = χ(g).

So χ is constant on conjugacy classes. �

EXAMPLE 11.4.4. Consider the standard action of Sn on Cn by permuting
basis vectors. For any σ ∈ Sn, we have χ(σ) = Tr(σ) is equal to the number
of elements of {1, . . . , n} fixed by σ.
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EXAMPLE 11.4.5. Notice that

χ(e) = Tr(Id) = dimV

for any representation of G.

EXAMPLE 11.4.6. Consider the regular representation. Recall that G acts on
C[G] by formula

h(
∑
g∈G

ag[g]) =
∑
g∈G

ag[hg].

Notice that if h 6= e then the matrix of h has no diagonal entries at all (as
g 6= hg for any g ∈ G), and so we have

χreg(x) =

{
|G| if x = e

0 if x 6= e

It turns out that characters behave very naturally with respect to various
basic operations with representations:

THEOREM 11.4.7. We have

χV⊕W = χV + χW ,

χV⊗W = χV χW ,

χV ∗ = χV ,

χHom(V,W ) = χV χW .

Proof. We are going to be lazy and use the fact that the trace is the sum of
eigenvalues and that ρ(g) is diagonalizable for any g ∈ G and any repre-
sentation ρ (as a linear operator of finite order).
G acts on V ⊕W by formula g(v, w) = (gv, gw). The matrix of this rep-

resentation is a block-diagonal matrix of representations in V and W , and
the trace is obviously additive.
G acts on V ⊗W by formula g(v ⊗ w) = gv ⊗ gw. This is well-defined: a

bilinear mapG : V ×W → V ⊗W defined asG(v, w) = (gv)⊗(gw) induces
a linear map v⊗w 7→ (gv)⊗(gw). Notice that if v1, . . . , vn (resp.w1, . . . , wm)
are eigenvectors for ρ(g) in V (resp. in W ) with eigenvalues λ1, . . . , λn
(resp. µ1, . . . , µm) then {vi ⊗ wj} are eigenvectors for ρ(g) in V ⊗W with
eigenvalues λiµj . We have

χV⊗W (g) =
∑
i,j

λiµj = (
∑
i

λi)(
∑
j

µj) = χV (g)χW (g).

G acts on V ∗ as follows: if f ∈ V ∗ is a linear map v 7→ f(v) ∈ C then
ρV ∗(g)f is a linear map

v 7→ f(ρ(g−1)v).
This looks funny, but in fact this is the only way to ensure that ρV ∗ is a
homomorphism, i.e. that ρV ∗(gh) = ρV ∗(g)ρV ∗(h). This is the standard
formula: each time the group G acts on a space X , it acts linearly on the
space of functions on X by a formula above. The matrix of ρV ∗(g) can be
obtained from the matrix of ρV (g) by transposing and inverting

�

§11.5. Schur Orthogonality Relations.
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§11.6. Decomposition of the Regular Representation.

§11.7. Representation Theory of the Dihedral Group.

§11.8. The Number of Irreducible Representations.

§11.9. C[G] as an Associative Algebra. We have already used the fact that
any f ∈ C[G] acts in any representation V of G “linearly extending” the
action of G. This fact can be refined as follows.

DEFINITION 11.9.1. We define a binary operation on C[G] by formula

[g] ? [h] = [gh]

extended by linearity. This makes C[G] into an associative algebra, called
the group algebra. (the product is associative because the multiplication in
G is associative). This algebra has a unit, namely [e] ∈ C[G].

If we think about elements of C[G] as functions G → C, the product is
known as the convolution product: for any functions α, β : G→ C, we have

α ? β(g) =
∑
h∈G

α(h)β(h−1g).

The following basic fact enhances the observation we already made that
the size of the group is equal to the sum of squares of dimensions of irre-
ducible representations. In it we use the following common notation: if V
is a k-vector space then we denote by End(V ) the algebra of all k-linear op-
erators V → V (sometimes called endomorphisms) with an operation given
by composition of linear operators. Of course this is just a coordinate-free
version of the matrix algebra Matn(k) (where n = dimV ).

LEMMA 11.9.2. C[G] with the convolution product is isomorphic to the direct sum

End(V1)× . . .× End(Vr)

over all irreducible representations.

Proof. For each f ∈ C[G], ρi(f) is an endomorphism of Vi. It is easy to see
that this gives a homomorphism

C[G]→ End(V1)× . . .× End(Vr).

We already know that both sides have the same dimension. So it suffices
to show that the map is injective. But if f =

∑
ag[g] ∈ C[G] acts trivially

on each irreducible representation, it acts trivially on any representation
whatsoever, including the regular representation. But we have

f ? [e] = f

is not trivial. �

As a digression, let’s discuss how one can develop the representation
theory of finite groups over an arbitrary field k of characteristic not divid-
ing |G|. The Schur orthogonality is not going to work because hermitian
inner products are specific to C. Instead, the Lemma above will play the
foundational role: one can prove it directly using the general theory of as-
sociative algebras.



ALGEBRA: LECTURE NOTES 97

More precisely, let’s consider the group algebra k[G] (here k is any field
of characteristic not dividing |G|). This is an example of an associative al-
gebra with a unit. Another example of such an algebra is End(V ). We can
talk about a representation of an associative algebra R in a vector space V :
it is given by a homomorphism R → End(V ). We can define irreducible
representations, etc. Notice that the category of representations of k[G] is
equivalent to the category of representations ofG (by extending any homo-
morphism G → GL(V ) to a homomorphism k[G] → End(V ) by linearity).
So the Maschke’s theorem implies that the category of representations of
k[G] is semi-simple: any representation is isomorphic to a direct sum of ir-
reducible representations. So k[G] is an example of a semi-simple algebra:

DEFINITION 11.9.3. A finite-dimensional associative algebraR (with a unit)
is called semi-simple if any finite-dimensional representation of R is isomor-
phic to a direct sum of irreducible representations.

One has the following amazing structure theorem:

THEOREM 11.9.4 (Wedderburn–Artin). Suppose k is algebraically closed. Then
R has finitely many irreducible representations V1, . . . , Vr and

R ' End(V1)× . . .× End(Vr).

We see that Lemma 11.9.2 is a formal corollary of this very general result
(the proof of this theorem is not at all difficult, see any textbook).

In fact, one can remove the assumption that k = k. In this case the
Schur’s lemma implies that EndR(Vi) (endomorphisms that commute with
the action of R) is a division algebra Di for each irreducible representa-
tion Vi, and then one has

R ' EndD1(V1)× . . .× EndDr(Vr),

the direct sum of matrix algebras over division algebras D1, . . . , Dr.
So, for example, if G is a finite group then R[G] is a direct sum of matrix

algebras over R, C, and the quaternions H.

§11.10. dimVi divides |G|.

THEOREM 11.10.1. Let ρ : G → GL(V ) be an irreducible representation of a
finite group G. Then dimV divides |G|.

Proof. Recall that the integral closure Z̄ of Z in C is called the ring of alge-
braic integers. These numbers are roots of monic polynomials with integer
coefficients. For example, χV (g) ∈ Z̄ for any g ∈ G. Indeed, ρ(g) is a matrix
such that ρ(g)k = Id for k = ord(g), and therefore all eigenvalues of ρ(g)
are k-th roots of unity. But any rot of unity is an algebraic integer. So χV (g)
is also an algebraic integer as the sum of these eigenvalues.

Let C ⊂ G be a conjugacy class and let

IC =
∑
g∈C

[g]

be its characteristic function. It follows from the definition that IC ?IC′ is an
integral linear combination of group elements, and therefore we can write

IC ? IC′ =
∑

nC′′IC′′
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for some integers nC′′ . Next we look how both sides act on V . Since IC is a
class function, it acts by scalar λC and we have

λCλC′ =
∑

nC′′λC′′ .

Let C1, . . . , Cr be all conjugacy classes of G. Then we have

λC

λC1

...
λCr

 = A

λC1

...
λCr


for some integral matrix A. This column-vector is non-trivial, for example
λ{e} = 1. It follows that each λC is an eigenvalue of an integral matrix, and
therefore each λC is an algebraic integer.

Now we use Schur’s orthogonality:

1 = (χV , χV ) =
1
|G|

∑
g∈G

χV (g)χV (g) =

1
|G|

r∑
i=1

|Ci|χV (gi)χV (gi) =
1
|G|

r∑
i=1

TrV (ICi)χV (gi)
1
|G|

r∑
i=1

dimV λCiχV (gi)

for some gi ∈ Ci. It follows that

|G|
dimV

=
r∑
i=1

λCiχV (gi)

is an algebraic integer. But it is also a rational number, and so must be an
integer since Z is integrally closed in Q (if a rational number r is a root of a
monic polynomial with integer coefficients, r must be an integer). �

§11.11. Burnside’s Theorem. As an application of developed techniques,
let’s prove the following theorem of Burnside:

THEOREM 11.11.1. Any group of order paqb, where p and q are primes, is solvable.

This is of course a vast improvement over similar but much simpler re-
sults obtained last semester using naive techniques. When Burnside proved
this result, he made an astonishing conjecture that in fact any finite group
of odd order is solvable. This was proved in 1963 by Feit and Thompson
in a dense 250-page long argument, which many at the time thought was
the most complicated proof ever. The theorem of Feit and Thompson is of-
ten considered to be the start of the classification of finite simple groups,
which was completed after Fischer and Griess discovered their Monster,
the largest sporadic simple group of order 8 · 1053.

The proof of Burnside’s theorem is based on the following lemma:

LEMMA 11.11.2. Suppose a finite group G has a conjugacy class C of size pk,
where p is prime and k > 0. Then G has a proper normal subgroup.

Given the lemma, let’s see how to finish the proof the proof of Burnside’s
theorem. Arguing by induction, it suffices to prove that G has a proper
normal subgroup. Since a p-group has a non-trivial center, we can assume
that p 6= q and a, b > 0. Let H be a Sylow q-group. Let x be a non-trivial
element of the center of H . Let Z(x) be the the centralizer of x in G. If
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Z(x) = G then the cyclic group generated by x is a proper normal subgroup
of G. If Z(x) 6= G then [G : Z(x)] = pk for some k > 0 (because H ⊂ Z(x)).
But [G : Z(x)] is equal to the number of elements in the conjugacy class
of x, and therefore G contains a proper normal subgroup by the Lemma.

It remains to prove the lemma.

Proof of the Lemma. Recall that we have a decomposition of the regular rep-
resentation

C[G] = Vreg '
r⊕
i=1

diVi,

where each irreducible representation appears di = dimVi times. Also re-
call that

χreg(x) =

{
|G| if x = e

0 if x 6= e

Let x ∈ C. By additivity of characters, we have

0 = 1 +
∑
χ 6=1

dχ(x)χ(x),

the summation over all non-trivial irreducible characters. Let’s concentrate
on irreducible representations such that p 6 |dχ.

Notice that χ(x) 6= 0 for one of such irreps: otherwise we would be able
to write 1/p as an integral linear combination of characters, which would
imply that 1/p is an algebraic integer, which is impossible because 1/p is a
rational number but not an integer.

Also notice that if x acts in Vχ by a scalar matrix then G has a proper
normal subgroup, namely the preimage of the normal subgroup C∗ Id ⊂
GL(Vχ) (this preimage is not equal to G because Vχ is irreducible).

The claim, however, is that one of these two things must happen.

CLAIM 11.11.3. Let ρ : G → GL(V ) be an irreducible representation with char-
acter χ and let C be a conjugacy class in G such that |C| and dimV are coprime.
If x ∈ C then either χ(x) = 0 or ρ(x) is a scalar linear operator.

Indeed, choose p and q such that

p|C|+ q dimV = 1.

Then

p
χ(x)|C|
dimV

+ qχ(x) =
χ(x)

dimV
.

In the proof of “divisibility” Theorem 11.10.1, we have noticed that

χ(x)|C|
dimV

= λC

is an algebraic integer. So we see that, in our case, α := χ(x)
dimV is also an

algebraic integer. Notice that χ(x) = ζ1 + . . .+ζd is a sum of d = dimV n-th
roots of unity (where n is the order of x in G).

There are two possibilities: either all these eigenvalues ζi are equal (in
which case ρ(x) is a scalar operator) or they are not equal, in which case

|α| = 1
d
|ζ1 + . . .+ ζd| < 1.
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However, we claim that this is impossible. Let L be the cyclotomic field
spanned by n-th roots of unity. Any element σ ∈ Gal(L/Q) preserves the
set of n-th roots of unity, and therefore

|σ(α)| = 1
d
|σ(ζ1) + . . .+ σ(ζd)| < 1.

It follows that the norm of α

β := N(α) =
∏

σ∈Gal(L/Q)

σ(α) ∈ Q

also satisfies |β| < 1. But each σ(α) is an algebraic integer, therefore β is an
algebraic integer, and so β ∈ Z. This gives a contradiction. �

§11.12. Exercises.
In this worksheet the base field is always C unless otherwise stated.

1. Describe explicitly (i.e. not just dimensions but how each element of the
group acts) all irreducible representations of (a) (Z/2Z)r; (b) D2n.
2. Describe explicitly all irreducible representations and build a character
table for (a) S3; (b)A4; (c) the quaternionic groupQ8 = {±1,±i,±j,±k}.
3. (a) Let V be the standard (n − 1)-dimensional representation of Sn and
let sgn be the 1-dimensional sign representation. Find all n such that V '
V ⊗ sgn. (b) Describe explicitly all irreducible representations of S4.
4. LetG be the group of affine transformations of F7 of the form x 7→ ax+b,
where a, b ∈ F7 and a3 = 1. (a) Show that |G| = 21 and describe its conju-
gacy classes. (b) Describe explicitly all irreducible complex representations
of G. (c) Let V be the 7-dimensional representation of G in the algebra of
functions F7 → C induced by the action of G on F7 by affine transforma-
tion. Decompose V as a direct sum of irreducible representations.
5. Let V be an irreducible representation of a finite groupG over R. (a) Show
that the complexification V ⊗R C is naturally a representation of G over C.
(b) This representation is either irreducible or a direct sum of two irre-
ducible representations. (c) Show on examples that both possibilities in
(b) do occur.
6. Let M be a module over a commutative ring R. Let M⊗k = M ⊗R
. . .⊗RM (k times). Let ΛkM be a quotient module of M⊗k by a submodule
generated by all elements of the form x1 ⊗ . . .⊗ xk where xi = xj for some
i and j. For any decomposable tensor x1 ⊗ . . . ⊗ xk ∈ M⊗k, its image in
ΛkM is denoted by x1 ∧ . . .∧ xk. Show that if M is a free R-module of rank
n with basis e1, . . . , en then ΛkM is a free R-module of rank

(
n
k

)
with basis

ei1 ∧ . . . ∧ eik for all 1 ≤ i1 < . . . < ik ≤ n.
7. (a) Show that if V is a representation of G (over a field) then ΛkV is also
a G-representation. (b) Let V1 and V2 be G-representations. Show that

Λk(V1 ⊕ V2) '
∑
a+b=k

ΛaV1 ⊗ ΛbV2.

8. (a) Let V be a representation of G with character χV . Show that

χΛ2V (g) =
1
2
(
χV (g)2 − χV (g2)

)
.
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(b) Let V be the standard 4-dimensional irreducible representation of S5.
Show that Λ2V is an irreducible 6-dimensional representation.
9. Let V be an irreducible representation of a finite group G. Show that
there exists a unique G-invariant hermitian inner product on V .
10. Show that the columns of the character matrix are orthogonal, and more
precisely that ∑

χ

χ(g)χ(g) =
|G|
c(g)

,

where the summation is over all irreducible characters of G and c(g) is the
number of elements of G conjugate to g. Also show that∑

χ

χ(g)χ(g′) = 0

if g and g′ are not conjugate.
11. In this problem k = Fq is a finite field with q = pn elements. Let G
be a p-group. Show that the trivial representation is the only irreducible
representation of G over k.
12. For any two 2-dimensional representations V1 and V2 of D11, decom-
pose V1 ⊗ V2 as a direct sum of irreducible representations.
13. Let V be a faithful representation of G (i.e. the homomorphism G →
GL(V ) is injective). Show that any irreducible representation of G is con-
tained in a tensor power V ⊗n for some n.


