ALGEBRA 612. FINAL EXAM.

Name:
The test contains three sections (Galois Theory, Commutative Algebra, and Representations of Finite Groups). Each section contains three problems. You have to choose two problems from each section. Only these problems will be graded. A problem with multiple parts counts as one problem. Please select your six problems here:

Staple your solutions to this problem set. Textbooks or lecture notes are not allowed. Problems are ordered randomly. Good luck!

1. GALOIS THEORY

In this section k denotes an arbitrary field.

1. Let G and H be finite groups of automorphisms of the field k. Show that $k^{G}=k^{H}$ if and only if $G=H$.
2. Let $K=k(u, v)$ be a field generated by algebraically independent elements u and v. Let $F=k\left(u^{2}, v^{2}\right) \subset K$. Show that there exists infinitely many intermediate subfields $F \subset L \subset K$ if and only if char $k=2$.
3. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 4 with roots $\alpha_{1}, \ldots, \alpha_{4}$. Let

$$
\begin{aligned}
& u=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right) \\
& v=\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
& w=\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

(a) Show that u, v, w are roots of a cubic polynomial with rational coefficients (do not derive explicit formulas for these coefficients). (b) Explain how to compute $\alpha_{1}, \ldots, \alpha_{4}$ in radicals explicitly using u, v, w.

2. Commutative Algebra

All rings in this section are commutative with 1.
4. Let p_{1}, \ldots, p_{r} be primes (not necessarily different) and let n_{1}, \ldots, n_{r} be positive integers. Consider the ring

$$
R=\left(\mathbb{Z} / p_{1}^{n_{1}} \mathbb{Z}\right) \times \ldots \times\left(\mathbb{Z} / p_{r}^{n_{r}} \mathbb{Z}\right)
$$

Compute $\operatorname{Spec} R$ and compute the localization $R_{\mathfrak{p}}$ for each prime ideal \mathfrak{p}.
5. Let k be an algebraically closed field and let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subset R$ be a radical ideal and let $J \subset R$ be any ideal. Show that

$$
\overline{V(I)-V(J)}=V((I: J))
$$

where

$$
(I: J)=\{r \in R \mid r J \subset I\}
$$

and \bar{X} denotes the Zariski closure of X.
6. Let $R \subset S$ be integral domains such that R is a UFD and S is integral over R. Let $K \subset F$ be their fields of fractions. Let $s \in S \subset F$ and let $f(x) \in K[x]$ be its monic minimal polynomial. Show that all coefficients of $f(x)$ belong to R.

3. Representations of Finite Groups

All representations in this section are complex representations.
7. Let \mathbb{F}_{q} be an arbitrary finite field and let G be the group of affine transformations of \mathbb{F}_{q} of the form $x \mapsto a x+b$, where $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. (a) List dimensions of all complex irreducible representations of G (including how many irreducible representations are there in each dimension). (b) Since G acts on \mathbb{F}_{q}, it also acts on functions $\mathbb{F}_{q} \rightarrow \mathbb{C}$. Let ρ be a $(q-1)$ dimensional complex representation of G on functions $f: \mathbb{F}_{q} \rightarrow \mathbb{C}$ such that $\sum_{x \in \mathbb{F}_{q}} f(x)=0$. Show that ρ is irreducible and compute its character.
8. Let p be a prime number and let G be a group of matrices of the form

$$
\left[\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right], \quad x, y, z \in \mathbb{F}_{p}
$$

(a) List dimensions of all complex irreducible representations of G (including how many irreducible representations are there in each dimension). (b) Let

$$
z_{0}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in G .
$$

Show that z_{0} acts in any p-dimensional representation of G as a scalar operator $\zeta \mathrm{Id}$, where ζ is one of the primitive p-th roots of 1 . (c) Compute characters of p-dimensional irreducible representations of G (it is not necessary to know their explicit models for this problem).
9. Let G_{1} and G_{2} be two finite groups and let V_{1} and V_{2} be their complex representations. (a) Show that $V_{1} \otimes V_{2}$ is a representation of $G_{1} \times G_{2}$, where this group acts by formula

$$
\left(g_{1}, g_{2}\right)\left(v_{1} \otimes v_{2}\right)=\left(g_{1} v_{1}\right) \otimes\left(g_{2} v_{2}\right) .
$$

What can you say about the character of this representation? (b) Show that if V_{1} and V_{2} are irreducible representations of G_{1} and G_{2} then $V_{1} \otimes V_{2}$ is an irreducible representation of $G_{1} \times G_{2}$. (c) Prove that any irreducible representation of $G_{1} \times G_{2}$ appears that way.

