## ALGEBRA 611: FINAL EXAM

No lecture notes or textbooks are allowed during the final. The test contains 8 problems (some problems have multiple parts). You have to select 6 problems that will be graded.

Please write your name here: $\qquad$
Please select your six problems here: $\qquad$

1. (a) Let $A$ be a complex $4 \times 7$ matrix. Prove that $\operatorname{rk}(A)=4$ if and only if there exists a complex $7 \times 4$ matrix $B$ such that $A B$ is the identity matrix. (b) Let $A$ be an integer $4 \times 7$ matrix. Prove that $A$ has rank 4 if and only if its reduction modulo $p$ has rank 4 for infinitely many prime numbers $p$.
2. Let $F: \mathbf{A b} \rightarrow$ Sets be a covariant functor that sends an Abelian group $G$ to the set of all pairs $F(G)=\{(x, y) \mid x, y \in G\}$ and that sends any homomorphism $f: G_{1} \rightarrow G_{2}$ to the function that sends each pair $(x, y) \in F\left(G_{1}\right)$ to the pair $(f(x), f(y)) \in F\left(G_{2}\right)$. Show that $F$ is a representable functor.
3. Let $V$ be an $\mathbb{R}$-vector space of polynomials $f(x)$ of degree at most 1 . Consider the following inner product on $V$ :

$$
(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

Let $T: V \rightarrow V$ be a differentiation linear map $T(f)=f^{\prime}$ for any $f \in V$. Compute the adjoint linear operator of $T$.
4. Let $P$ be a 5 -Sylow subgroup of the symmetric group $G=S_{100}$. (a) Compute the order of $P$. (b) Let $H=N_{G}(P)$. Prove that $N_{G}(H)=H$.
5. Let $R$ be a ring such that $x^{2}=x$ for any $x \in R$. Show that if $P \subset R$ is a prime ideal then $R / P \simeq \mathbb{Z} / 2 \mathbb{Z}$.
6. (a) Find the characteristic and the minimal polynomials of

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & a \\
1 & 0 & 0 & b \\
0 & 1 & 0 & c \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

Justify your answer. (b) Construct an explicit linear map $A: \mathbb{Q}^{4} \rightarrow \mathbb{Q}^{4}$ with the following property. If $L \subset \mathbb{Q}^{4}$ is a $\mathbb{Q}$-vector subspace such that $A(L) \subset L$ then $L=\{0\}$ or $L=\mathbb{Q}^{4}$.
7. Fix ideals $I, J \subset R$. Prove that $(R / I) \otimes_{R}(R / J) \simeq R /(I+J)$.
8. Let $R$ be a UFD with the field of fractions $K$. Let $f, g, h$ be monic polynomials in $K[x]$ such that $f g=h$. Prove that $h \in R[x]$ if and only if $f, g \in R[x]$.


