## ALGEBRA 611: FINAL EXAM

No lecture notes or textbooks are allowed during the final. The test contains 8 problems (some problems have multiple parts). You have to select 6 problems that will be graded.

Please write your name here: \_\_\_

Please select your six problems here:

**1.** (a) Let *A* be a complex  $4 \times 7$  matrix. Prove that rk(A) = 4 if and only if there exists a complex  $7 \times 4$  matrix *B* such that *AB* is the identity matrix. (b) Let *A* be an integer  $4 \times 7$  matrix. Prove that *A* has rank 4 if and only if its reduction modulo *p* has rank 4 for infinitely many prime numbers *p*.

**2.** Let  $F : \mathbf{Ab} \to \mathbf{Sets}$  be a *covariant* functor that sends an Abelian group G to the set of all pairs  $F(G) = \{(x, y) | x, y \in G\}$  and that sends any homomorphism  $f : G_1 \to G_2$  to the function that sends each pair  $(x, y) \in F(G_1)$  to the pair  $(f(x), f(y)) \in F(G_2)$ . Show that F is a representable functor.

**3.** Let *V* be an  $\mathbb{R}$ -vector space of polynomials f(x) of degree at most 1. Consider the following inner product on *V*:

$$(f,g) = \int_0^1 f(x)g(x) \, dx.$$

Let  $T : V \to V$  be a differentiation linear map T(f) = f' for any  $f \in V$ . Compute the adjoint linear operator of T.

4. Let *P* be a 5-Sylow subgroup of the symmetric group  $G = S_{100}$ . (a) Compute the order of *P*. (b) Let  $H = N_G(P)$ . Prove that  $N_G(H) = H$ . 5. Let *R* be a ring such that  $x^2 = x$  for any  $x \in R$ . Show that if  $P \subset R$  is a prime ideal then  $R/P \simeq \mathbb{Z}/2\mathbb{Z}$ .

6. (a) Find the characteristic and the minimal polynomials of

$$\begin{bmatrix}
0 & 0 & 0 & a \\
1 & 0 & 0 & b \\
0 & 1 & 0 & c \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Justify your answer. (b) Construct an explicit linear map  $A : \mathbb{Q}^4 \to \mathbb{Q}^4$  with the following property. If  $L \subset \mathbb{Q}^4$  is a  $\mathbb{Q}$ -vector subspace such that  $A(L) \subset L$  then  $L = \{0\}$  or  $L = \mathbb{Q}^4$ .

7. Fix ideals  $I, J \subset R$ . Prove that  $(R/I) \otimes_R (R/J) \simeq R/(I+J)$ .

**8.** Let *R* be a UFD with the field of fractions *K*. Let *f*, *g*, *h* be monic polynomials in K[x] such that fg = h. Prove that  $h \in R[x]$  if and only if  $f, g \in R[x]$ .

