ALGEBRA 611, FALL 2009. HOMEWORK 7⁽¹⁾

In this worksheet *k* denotes an arbitrary field, *R* denotes a ring (as usual, commutative and with 1), and *p* is a prime number.

1. (a) Prove that the category of \mathbb{Z} -modules is equivalent to the category of Abelian groups. (b) Prove that the category of k[x]-modules is equivalent to the following category C: objects of C are pairs (V, L), where V is a k-vector space and $L: V \to V$ is a linear map. Morphisms of C are ... (you have to say what they are yourself).

2. Let *C* be the category of $\mathbb{Z}[i]$ -modules and let $F : C \to Ab$ be a forgetful functor. Find all prime numbers *p* such that $\mathbb{Z}/p\mathbb{Z}$ is in the image of *F*.

3. Let *V* be a finite-dimensional *k*-vector space and let $L : V \to V$ be a linear operator. Prove that there exists i > 0 such that $\text{Ker}(L^i) \cap \text{Im}(L^i) = 0$. **4.** Let *R* be a PID, let *M* be a f.g. *R*-module, and let $r \in R$. Let $A_k = \{m \in M \mid r^k m = 0\}$ and let $B_k = \{m \in M \mid m = r^k m'\}$ for some $m' \in M$. Prove that $A_k \cap B_k = 0$ for some k > 0.

5. Let *A* be a non-singular square matrix. Show that there exists a polynomial $f \in k[x]$ such that $A^{-1} = f(A)$.

6. Let *A* be a complex $n \times n$ matrix such that every entry of *A* is equal to 1. Determine its (a) characteristic polynomial; (b) minimal polynomial; (c) Jordan normal form.

7. Let *A* be a complex square matrix. Show that there exist complex matrices *D* and *N* such that

• A = D + N, DN = ND;

• *D* is diagonalizable and *N* is nilpotent, i.e. $N^s = 0$ for some *s*.

8. Let \mathbb{F}_{p^n} be a finite field with p^n elements and let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be a Frobenius automorphism $F(x) = x^p$. (a) Considering \mathbb{F}_{p^n} as a vector space over \mathbb{F}_p , prove that F is \mathbb{F}_p -linear. (b) Find a minimal polynomial of F.

9. Ideals $I, J \subset R$ are called coprime if I + J = R. Prove that if I and J are coprime then I^7 and J^9 are also coprime.

10. Let I = (x, y) be an ideal in R = k[x, y]. Considering *I* as an *R*-module, prove that it is finitely presented, and find its finite presentation.

11. Let *R* be a PID and let *M* be a finitely generated *R*-module. Give a definition of an element $r \in R$ such that if R = k[X] and *M* corresponds to a linear operator $L: V \to V$, *r* is equal to the minimal polynomial of *L*.

¹This homework is due before class on Monday Nov 16. These problems will be discussed during the review section on Monday at 4pm. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade *two* of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.