ALGEBRA 611, FALL 2009. HOMEWORK 6

1.

2. Compute the Smith normal form of the matrix

$$\left[\begin{array}{rrrr} 4 & -4 & 4 \\ 4 & -3+i & 5+i \end{array}\right]$$

over the Gaussian integers $\mathbb{Z}[i]$.

- 3. An *R*-module *M* is called torsion-free if rm = 0 (where $r \in R$ and $m \in M$) implies that r = 0 or m = 0. Prove that if *R* is a PID and *M* is a torsion-free finitely-generated module, then *M* is a free *R*-module.
- 4. (a) Prove that \mathbb{Q} is a torsion-free but not free \mathbb{Z} -module.
- (b) Find a finitely-generated k[x, y]-module that is torision-free but not free.
- 5. Let R = k[[x]] be the ring of formal power series. Show that R is a PID.
- 6. Let R = k[[x]] be the ring of formal power series. Sow that isomorphism classes of finitely-generated *R*-modules are naturally parametrized by pairs (λ, r) , where λ is a Young diagram and *r* is a non-negative integer.
- (a) Show that an ideal (d) of a PID is maximal if and only if d is irreducible.
 (b) Describe all maximal ideals in C[x].
- 8. Describe all maximal ideals in $\mathbb{R}[x]$.
- 9.
- 10. Let $p \in \mathbb{Z}$ be a prime number such that $p \equiv 3 \mod 4$. Prove that $\mathbb{Z}[i]/(i)$ is a field with p^2 elements.
- 11. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an exact sequence of *R*-modules. (a) Prove that if M_1 and M_3 are torsion-free then M_2 is torsion-free. (b) Is the converse of (a) true?
- 12. Find four different maximal ideals in $\mathbb{Z}[\sqrt{-2}]$.