ALGEBRA 611, FALL 2009. HOMEWORK 6

1.
2. Compute the Smith normal form of the matrix

$$
\left[\begin{array}{ccc}
4 & -4 & 4 \\
4 & -3+i & 5+i
\end{array}\right]
$$

over the Gaussian integers $\mathbb{Z}[i]$.
3. An R-module M is called torsion-free if $r m=0$ (where $r \in R$ and $m \in M$) implies that $r=0$ or $m=0$. Prove that if R is a PID and M is a torsion-free finitely-generated module, then M is a free R-module.
4. (a) Prove that \mathbb{Q} is a torsion-free but not free \mathbb{Z}-module.
(b) Find a finitely-generated $k[x, y]$-module that is torision-free but not free.
5. Let $R=k[[x]]$ be the ring of formal power series. Show that R is a PID.

6 . Let $R=k[[x]]$ be the ring of formal power series. Sow that isomorphism classes of finitely-generated R-modules are naturally parametrized by pairs (λ, r), where λ is a Young diagram and r is a non-negative integer.
7. (a) Show that an ideal (d) of a PID is maximal if and only if d is irreducible.
(b) Describe all maximal ideals in $\mathbb{C}[x]$.
8. Describe all maximal ideals in $\mathbb{R}[x]$.
9.
10. Let $p \in \mathbb{Z}$ be a prime number such that $p \equiv 3 \bmod 4$. Prove that $\mathbb{Z}[i] /(i)$ is a field with p^{2} elements.
11. Let $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be an exact sequence of R-modules.
(a) Prove that if M_{1} and M_{3} are torsion-free then M_{2} is torsion-free.
(b) Is the converse of (a) true?
12. Find four different maximal ideals in $\mathbb{Z}[\sqrt{-2}]$.

