ALGEBRA 611, FALL 2009. HOMEWORK $5{ }^{(1)}$

In this worksheet p denotes a prime number, k denotes an arbitrary field, $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ denotes a finite field with p elements, R denotes a ring, and R^{*} denotes the multiplicative group of units of R.

1. Let $R=\mathbb{Z}[i] \subset \mathbb{C}$. (a) Draw the principal ideal $(1+3 i)$ (as a subset of the complex plane). (b) Let $a, b \in R$. Prove that in R one can write $a=b q+r$, where $0 \leq|r|<|b|$. (c) Prove that R is a PID (and hence a UFD). (d) Find the factorization of 15 into irreducible elements of R.
2. Let $R=\mathbb{Z}[\sqrt{-2}] \subset \mathbb{C}$. (a) Draw the principal ideal generated by $2+\sqrt{-2}$. (b) Prove that R is a UFD. (c) Prove that if $x, y \in \mathbb{Z}$ such that $y^{2}+2=x^{3}$, then $y+\sqrt{-2}$ is a cube in R. (d) Determine all integer solutions of the diophantine equation $y^{2}+2=x^{3}$.
3. Prove that a finite domain is a field.
4. Prove that if R is a PID and $d \in R$ is irreducible then $R /(d)$ is a field.
5. Prove that $k[x]$ contains infinitely many irreducible polynomials.
6. Suppose R contains \mathbb{F}_{p}. Prove that the map

$$
F: R \rightarrow R, \quad F(x)=x^{p}
$$

is a ring homomorphism (called the Frobenius endomorphism).
7. Fix an integer $m>0$. (a) Prove that $\mathbb{F}_{p}[x]$ contains an irreducible polynomial f of degree $n>m$. (b) Show that $\mathbb{F}_{p^{n}}:=\mathbb{F}_{p}[x] /(f)$ is a field with p^{n} elements. (c) Suppose that m divides n. Show that

$$
\mathbb{F}_{p^{m}}:=\left\{x \in \mathbb{F}_{p^{n}} \mid x^{p^{m}}=x\right\}
$$

is a subfield with p^{m} elements (Hint: use that $\mathbb{F}_{p^{n}}^{*}$ is a cyclic group).
9. Find all Sylow subgroups of $R=\mathbb{Z} / 72 \mathbb{Z}$ (as an additive group) and R^{*}.
10. Let R be the ring of p-adic integers (the inverse limit of rings $\mathbb{Z} / p^{n} \mathbb{Z}$).
(a) Prove that R is a domain. (b) Prove that $a \in R^{*}$ iff $a \not \equiv 0 \bmod p$ (Hint: this is analogous to $k[[x]]$). (c) Describe all ideals in R.
11. Consider \mathbb{Q} (rational numbers) as an Abelian group. (a) Prove that \mathbb{Q} is not a direct sum of cyclic groups. Does this contradict the fundamental theorem on Abelian groups? (b) Suppose \mathbb{Q} is contained in an Abelian group G. Prove that G contains a nontrivial subgroup H such that $\mathbb{Q} \cap H \neq\{0\}$. Then use Zorn's lemma to prove that G contains a nontrivial subgroup H such that $\mathbb{Q} \oplus H=G$.

[^0]
[^0]: ${ }^{1}$ This homework is due before class on Monday Nov 2. These problems will be discussed during the review section on Monday at 4 pm . The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. Please make sure that all solutions are complete and accurately written. There is a "bailout" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

