## ALGEBRA 611, FALL 2009. HOMEWORK 4

This homework is due before the class on Monday October 26. These problems will be discussed during the review section on Monday at 4 pm .

The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. Please make sure that all solutions are complete and accurately written.

There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

In this worksheet, $p$ and $q$ always denote different prime numbers.

1. Describe all finite groups with exactly (a) two, (b) three conjugacy classes. 2. Let $G$ be a $p$-group. Prove that there exists a sequence of subgroups

$$
\{e\}=G_{0} \subset G_{1} \subset \ldots \subset G_{n}=G
$$

such that $G_{i}$ is normal in $G_{i+1}$ and $G_{i+1} / G_{i} \simeq \mathbb{Z} / p \mathbb{Z}$ for each $i$.
3. (a) Find a Sylow $p$-subgroup $G$ in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ (the group of invertible $n \times n$ matrices with coefficients in the finite field with $p$ elements). (b) Compute its normalizer. (c) Find the sequence of subgroups of $G$ as in Problem 2.
4. Find 2-Sylow subgroups in $S_{4}$ (the group of permutations of 4 letters) and 5 -Sylow subgroups in $A_{5}$ (the group of even permutations of 5 letters). In particular, find the number of these Sylow subgroups.
5. Prove that one of Sylow subgroups in a group of order (a) 40, (b) $p^{2} q$ is normal.
Definition. Let $H, K$ be subgroups of $G$ and suppose that

- $H$ is normal in $G$;
- $H K=G$;
- $H \cap K=\{e\}$.

Then we say that $G$ is an (inner) semidirect product of $H$ and $K$.
6. (a) Prove that any group of order $p q$ is a semidirect product of cyclic groups. (b) Prove that a dihedral group $D_{n}$ (the group of all symmetries of the regular $n$-gon) is a semidirect product of cyclic groups $\mathbb{Z} / n \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z}$.
Definition. Let $H$ and $K$ be groups and let $\phi: K \rightarrow \operatorname{Aut}(H)$ be a homomorphism. An (outer) semidirect product of $H$ and $K$ is a set of pairs

$$
\{(h, k) \mid h \in H, k \in K\}
$$

with the following operation: $\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1}\left[\phi\left(k_{1}\right) h_{2}\right], k_{1} k_{2}\right)$.
7. (a) Prove that an (outer) semidirect product is a well-defined group. (b) Prove that an (inner) semidirect product of $H$ and $K$ is isomorphic to their (outer) semidirect product with respect to some homomorphism $\phi$.
8. Let $P$ be a $p$-group and let $H \subset P$ be a normal subgroup of order $p$. Prove that $H$ is contained in the center of $P$.
9. Prove that there exists a non-Abelian group of order $p^{3}$ and that this group can not be presented as a semidirect product of its proper subgroups. 10. (a) Show that if $H_{1}, H_{2} \subset G$ are subgroups of finite index then $H_{1} \cap H_{2}$ is also a subgroup of finite index. (b) Let $H \subset G$ be a subgroup of finite index. Show that $H$ contains a subgroup $N$ which is a normal subgroup of $G$ of finite index.
11. Let $I$ be a poset and suppose that $I$ is directed, i.e. that for any two elements $i, j \in I$, there exists $k \in I$ such that $i \leq k$ and $j \leq k$. Let $G_{i}$ be an inverse system of groups indexed by $I$. Prove that the inverse limit exists.
12. Let $I$ be the poset of normal subgroups of $G$ of finite index (ordered by inclusion). Prove that quotient groups $G / H$ form an inverse system of groups indexed by $I$ and that this inverse system has an inverse limit (called the profinite completion of $G$ ).
13. Let $G$ be a finite group acting on a finite set $S$. (a) Prove that the number of orbits is equal to

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|, \quad \text { where } \quad \operatorname{Fix}(g)=\{x \in S \mid g x=x\}
$$

(b) If $|S|>1$ and the action is transitive (i.e. there is only one orbit), there exists $g \in G$ such that $\operatorname{Fix}(g)$ is empty. (c) Let $H$ be a proper subgroup of a finite group $G$. Show that $G$ is not the union of conjugates of $H$.
14. Let $A$ be an Abelian group and let $\mathbf{A b} / A$ be the category of Abelian groups over $A$, i.e. the category of homomorphisms $X \rightarrow A$ from arbitrary Abelian groups to $A$. Prove that this category has products and coproducts.

