ALGEBRA 611, FALL 2009. HOMEWORK 2

This homework is due before the class on Monday September 28. These problems will be discussed during the review section on Monday at 4pm.

The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. Please make sure that all solutions are complete and accurately written.

There is a "bail-out" provision: you can ask the grader not to grade *two* of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

1. Let P_3 be a vector space of complex polynomials in one variable of degree at most 3. (a) Prove that the formula

$$(f,g) = \int_{-1}^{1} f(x)\overline{g(x)} \, dx$$

gives an inner product on P_3 . (b) Use Gram-Schmidt process to find an orthonormal basis of a subspace spanned by x and x^2 . (c) Extend the basis of (b) to an orthonormal basis of P_3 . (d) Let $D : P_3 \rightarrow P_3$ be a linear map given by differentiation, $f \mapsto f'$. Describe its adjoint linear map explicitly. **2.** Let P be a vector space of all real polynomials in one variable. (a) Prove that the formula

$$(f,g) = \int_{-1}^{1} f(x)g(x) \frac{dx}{\sqrt{1-x^2}}$$

gives an inner product on P (be careful with indefinite integrals). (b) Prove that there exists a unique polynomial f_n of degree n such that

$$f_n(\cos\theta) = \cos(n\theta)$$

(Hint: induction). (c) Prove that $f_0, f_1, f_2, ...$ is an orthogonal basis of *P*. **3.** Let *U* be a subspace of a vector space *V* with an inner product. Let

$$U^{\perp} = \{ v \in V \, | \, (v, u) = 0 \text{ for all } u \in U \}.$$

be an orthogonal complement. Prove that (a) if *V* is finite-dimensional then $V = U \oplus U^{\perp}$. (b) If *V* is infinite-dimensional then U^{\perp} can be equal to 0 even if $U \neq V$!

4. (a) Let *V* be a finite-dimensional inner product space. Prove that a linear map $L : V \to V$ is an orthogonal projection onto a subspace if and only if *L* is self-adjoint and $L^2 = L$. (b) In notation of Problem 1, give a matrix of an orthogonal projection onto a subspace in Problem 1 part (b) in the basis $\{1, x, x^2, x^3\}$.

5. Prove that the product of two Hermitian matrices is Hermitian if and only if they commute.

6. Prove that any matrix in $Mat_{n,n}(\mathbb{R})$ (resp. $Mat_{n,n}(\mathbb{C})$) is a product of an orthogonal (resp. unitary) matrix and an upper-triangular matrix.

7. Let *A* be a unitary matrix. Prove that all roots of det(A - z Id) = 0 lie on a unit circle |z| = 1.

8. Let *A* be a $k \times n$ complex matrix with $\operatorname{rk} A = n$. Prove that A^*A is an invertible matrix.

9. Let *V* be a finite-dimensional vector space with an inner product and let $f \in V^*$. Prove that there exists a unique $v_0 \in V$ such that $f(v) = (v, v_0)$ for any $v \in V$.

10. Consider \mathbb{R}^n with the standard inner product. Let $H \subset \mathbb{R}^n$ be a subspace of codimension 1. (a) Prove that there exists a unique non-trivial orthogonal map $\mathbb{R}^n \to \mathbb{R}^n$ that fixes all vectors in H. It is called a reflection with respect to H. (b) Prove that any orthogonal map $\mathbb{R}^2 \to \mathbb{R}^2$ is a product of at most two reflections.

11. Let *A* be a Hermitian positive-semidefinite matrix. Prove that $A = B^*B$, where *B* is an upper-triangular matrix.

12. Let $v_1, \ldots, v_k \in V$, where V is an inner-product space. Consider the *Gram* matrix

$$G(v_1, \dots, v_k) = \begin{bmatrix} (v_1, v_1) & \dots & (v_1, v_k) \\ \vdots & \ddots & \vdots \\ (v_k, v_1) & \dots & (v_k, v_k) \end{bmatrix}$$

(a) Prove that

$$[c_1 \dots c_k]G(v_1, \dots, v_k) \begin{bmatrix} \bar{c}_1 \\ \vdots \\ \bar{c}_k \end{bmatrix} = ||c_1v_1 + \dots + c_kv_k||^2.$$

Deduce that $G(v_1, \ldots, v_k)$ is Hermitian and positive semi-definite. (b) Show that det $G(v_1, \ldots, v_k) \ge 0$ with equality if and only v_1, \ldots, v_k are linearly dependent.

13. Prove that any symmetric real matrix can be written as QDQ^t , where Q is an orthogonal matrix and D is a diagonal matrix.

14. (a) Let *V* be a finite-dimensional real vector space with an inner product. Show that Problem 9 defines a canonical isomorphism between *V* and V^* . Let $L: V \to V$ be a linear operator. Show that an adjoint linear operator $L^*: V \to V$ can then be identified with a contragredient linear operator $L^*: V^* \to V^*$. (b) In the complex case, show that an identification between *V* and *V* and *V* given by Problem 9 is not an isomorphism.

2