ALGEBRA 611, FALL 2009. HOMEWORK 2

This homework is due before the class on Monday September 28. These problems will be discussed during the review section on Monday at 4 pm .

The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. Please make sure that all solutions are complete and accurately written.

There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

1. Let P_{3} be a vector space of complex polynomials in one variable of degree at most 3. (a) Prove that the formula

$$
(f, g)=\int_{-1}^{1} f(x) \overline{g(x)} d x
$$

gives an inner product on P_{3}. (b) Use Gram-Schmidt process to find an orthonormal basis of a subspace spanned by x and x^{2}. (c) Extend the basis of (b) to an orthonormal basis of P_{3}. (d) Let $D: P_{3} \rightarrow P_{3}$ be a linear map given by differentiation, $f \mapsto f^{\prime}$. Describe its adjoint linear map explicitly. 2. Let P be a vector space of all real polynomials in one variable. (a) Prove that the formula

$$
(f, g)=\int_{-1}^{1} f(x) g(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

gives an inner product on P (be careful with indefinite integrals). (b) Prove that there exists a unique polynomial f_{n} of degree n such that

$$
f_{n}(\cos \theta)=\cos (n \theta)
$$

(Hint: induction). (c) Prove that $f_{0}, f_{1}, f_{2}, \ldots$ is an orthogonal basis of P. 3. Let U be a subspace of a vector space V with an inner product. Let

$$
U^{\perp}=\{v \in V \mid(v, u)=0 \text { for all } u \in U\}
$$

be an orthogonal complement. Prove that (a) if V is finite-dimensional then $V=U \oplus U^{\perp}$. (b) If V is infinite-dimensional then U^{\perp} can be equal to 0 even if $U \neq V$!
4. (a) Let V be a finite-dimensional inner product space. Prove that a linear $\operatorname{map} L: V \rightarrow V$ is an orthogonal projection onto a subspace if and only if L is self-adjoint and $L^{2}=L$. (b) In notation of Problem 1, give a matrix of an orthogonal projection onto a subspace in Problem 1 part (b) in the basis $\left\{1, x, x^{2}, x^{3}\right\}$.
5. Prove that the product of two Hermitian matrices is Hermitian if and only if they commute.
6. Prove that any matrix in $\operatorname{Mat}_{n, n}(\mathbb{R})$ (resp. $\operatorname{Mat}_{n, n}(\mathbb{C})$) is a product of an orthogonal (resp. unitary) matrix and an upper-triangular matrix.
7. Let A be a unitary matrix. Prove that all roots of $\operatorname{det}(A-z \mathrm{Id})=0$ lie on a unit circle $|z|=1$.
8. Let A be a $k \times n$ complex matrix with $\mathrm{rk} A=n$. Prove that $A^{*} A$ is an invertible matrix.
9. Let V be a finite-dimensional vector space with an inner product and let $f \in V^{*}$. Prove that there exists a unique $v_{0} \in V$ such that $f(v)=\left(v, v_{0}\right)$ for any $v \in V$.
10. Consider \mathbb{R}^{n} with the standard inner product. Let $H \subset \mathbb{R}^{n}$ be a subspace of codimension 1. (a) Prove that there exists a unique non-trivial orthogonal map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that fixes all vectors in H. It is called a reflection with respect to H. (b) Prove that any orthogonal map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a product of at most two reflections.
11. Let A be a Hermitian positive-semidefinite matrix. Prove that $A=B^{*} B$, where B is an upper-triangular matrix.
12. Let $v_{1}, \ldots, v_{k} \in V$, where V is an inner-product space. Consider the Gram matrix

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left[\begin{array}{ccc}
\left(v_{1}, v_{1}\right) & \ldots & \left(v_{1}, v_{k}\right) \\
\vdots & \ddots & \vdots \\
\left(v_{k}, v_{1}\right) & \ldots & \left(v_{k}, v_{k}\right)
\end{array}\right]
$$

(a) Prove that

$$
\left[c_{1} \ldots c_{k}\right] G\left(v_{1}, \ldots, v_{k}\right)\left[\begin{array}{c}
\bar{c}_{1} \\
\vdots \\
\bar{c}_{k}
\end{array}\right]=\left\|c_{1} v_{1}+\ldots+c_{k} v_{k}\right\|^{2} .
$$

Deduce that $G\left(v_{1}, \ldots, v_{k}\right)$ is Hermitian and positive semi-definite. (b) Show that $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right) \geq 0$ with equality if and only v_{1}, \ldots, v_{k} are linearly dependent.
13. Prove that any symmetric real matrix can be written as $Q D Q^{t}$, where Q is an orthogonal matrix and D is a diagonal matrix.
14. (a) Let V be a finite-dimensional real vector space with an inner product. Show that Problem 9 defines a canonical isomorphism between V and V^{*}. Let $L: V \rightarrow V$ be a linear operator. Show that an adjoint linear operator $L^{*}: V \rightarrow V$ can then be identified with a contragredient linear operator $L^{*}: V^{*} \rightarrow V^{*}$. (b) In the complex case, show that an identification between V and V^{*} given by Problem 9 is not an isomorphism.

