ALGEBRA 612, SPRING 2010. HOMEWORK 8

In this worksheet the base field is always \mathbb{C} unless otherwise stated. **1.** Describe explicitly (i.e. not just dimensions but how each element of the group acts) all irreducible representations of (a) $(\mathbb{Z}/2\mathbb{Z})^r$; (b) D_{2n} .

Describe explicitly all irreducible representations and build a character table for (a) S₃; (b) A₄; (c) the quaternionic group Q₈ = {±1, ±i, ±j, ±k}.
(a) Let V be the standard (n − 1)-dimensional representation of S_n and let sgn be the 1-dimensional sign representation. Find all n such that V ≃ V ⊗ sgn. (b) Describe explicitly all irreducible representations of S₄.

4. Let *G* be the group of affine transformations of \mathbb{F}_7 of the form $x \mapsto ax + b$, where $a, b \in \mathbb{F}_7$ and $a^3 = 1$. (a) Show that |G| = 21 and describe its conjugacy classes. (b) Describe explicitly all irreducible complex representations of *G*. (c) Let *V* be the 7-dimensional representation of *G* in the algebra of functions $\mathbb{F}_7 \to \mathbb{C}$ induced by the action of *G* on \mathbb{F}_7 by affine transformation. Decompose *V* as a direct sum of irreducible representations.

5. Let *V* be an irreducible representation of a finite group *G* over \mathbb{R} . (a) Show that the complexification $V \otimes_{\mathbb{R}} \mathbb{C}$ is naturally a representation of *G* over \mathbb{C} . (b) This representation is either irreducible or a direct sum of two irreducible representations. (c) Show on examples that both possibilities in (b) do occur.

6. Let *M* be a module over a commutative ring *R*. Let $M^{\otimes k} = M \otimes_R \dots \otimes_R M$ (*k* times). Let $\Lambda^k M$ be a quotient module of $M^{\otimes k}$ by a submodule generated by all elements of the form $x_1 \otimes \dots \otimes x_k$ where $x_i = x_j$ for some *i* and *j*. For any decomposable tensor $x_1 \otimes \dots \otimes x_k \in M^{\otimes k}$, its image in $\Lambda^k M$ is denoted by $x_1 \wedge \dots \wedge x_k$. Show that if *M* is a free *R*-module of rank *n* with basis e_1, \dots, e_n then $\Lambda^k M$ is a free *R*-module of rank $\binom{n}{k}$ with basis $e_{i_1} \wedge \dots \wedge e_{i_k}$ for all $1 \leq i_1 < \dots < i_k \leq n$.

7. (a) Show that if *V* is a representation of *G* (over a field) then $\Lambda^k V$ is also a *G*-representation. (b) Let V_1 and V_2 be *G*-representations. Show that

$$\Lambda^k(V_1 \oplus V_2) \simeq \sum_{a+b=k} \Lambda^a V_1 \otimes \Lambda^b V_2.$$

8. (a) Let *V* be a representation of *G* with character χ_V . Show that

$$\chi_{\Lambda^2 V}(g) = \frac{1}{2} \left(\chi_V(g)^2 - \chi_V(g^2) \right).$$

(b) Let *V* be the standard 4-dimensional irreducible representation of S_5 . Show that $\Lambda^2 V$ is an irreducible 6-dimensional representation. 9. Let *V* be an irreducible representation of a finite group *G*. Show that there exists a unique *G*-invariant hermitian inner product on *V*.

⁰This homework is due before class on Monday May 3. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade *two* of the problems.

10. Show that the columns of the character matrix are orthogonal, and more precisely that

$$\sum_{\chi} \chi(g) \overline{\chi(g)} = \frac{|G|}{c(g)},$$

where the summation is over all irreducible characters of G and c(g) is the number of elements of G conjugate to g. Also show that

$$\sum_{\chi} \chi(g) \overline{\chi(g')} = 0$$

if g and g' are not conjugate.

11. In this problem $k = \mathbb{F}_q$ is a finite field with $q = p^n$ elements. Let *G* be a *p*-group. Show that the trivial representation is the only irreducible representation of *G* over *k*.

12. For any two 2-dimensional representations V_1 and V_2 of D_{11} , decompose $V_1 \otimes V_2$ as a direct sum of irreducible representations.

13. Let *V* be a faithful representation of *G* (i.e. the homomorphism $G \rightarrow GL(V)$ is injective). Show that any irreducible representation of *G* is contained in a tensor power $V^{\otimes n}$ for some *n*.