ALGEBRA 612, SPRING 2010. HOMEWORK 8

In this worksheet the base field is always \mathbb{C} unless otherwise stated.

1. Describe explicitly (i.e. not just dimensions but how each element of the group acts) all irreducible representations of (a) $(\mathbb{Z} / 2 \mathbb{Z})^{r}$; (b) $D_{2 n}$.
2. Describe explicitly all irreducible representations and build a character table for (a) $S_{3} ; \quad$ (b) $A_{4} ; \quad$ (c) the quaternionic group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$. 3. (a) Let V be the standard $(n-1)$-dimensional representation of S_{n} and let sgn be the 1-dimensional sign representation. Find all n such that $V \simeq$ $V \otimes$ sgn. (b) Describe explicitly all irreducible representations of S_{4}.
3. Let G be the group of affine transformations of \mathbb{F}_{7} of the form $x \mapsto a x+b$, where $a, b \in \mathbb{F}_{7}$ and $a^{3}=1$. (a) Show that $|G|=21$ and describe its conjugacy classes. (b) Describe explicitly all irreducible complex representations of G. (c) Let V be the 7 -dimensional representation of G in the algebra of functions $\mathbb{F}_{7} \rightarrow \mathbb{C}$ induced by the action of G on \mathbb{F}_{7} by affine transformation. Decompose V as a direct sum of irreducible representations.
4. Let V be an irreducible representation of a finite group G over \mathbb{R}. (a) Show that the complexification $V \otimes_{\mathbb{R}} \mathbb{C}$ is naturally a representation of G over \mathbb{C}. (b) This representation is either irreducible or a direct sum of two irreducible representations. (c) Show on examples that both possibilities in (b) do occur.
5. Let M be a module over a commutative ring R. Let $M^{\otimes k}=M \otimes_{R}$ $\ldots \otimes_{R} M$ (k times). Let $\Lambda^{k} M$ be a quotient module of $M^{\otimes k}$ by a submodule generated by all elements of the form $x_{1} \otimes \ldots \otimes x_{k}$ where $x_{i}=x_{j}$ for some i and j. For any decomposable tensor $x_{1} \otimes \ldots \otimes x_{k} \in M^{\otimes k}$, its image in $\Lambda^{k} M$ is denoted by $x_{1} \wedge \ldots \wedge x_{k}$. Show that if M is a free R-module of rank n with basis e_{1}, \ldots, e_{n} then $\Lambda^{k} M$ is a free R-module of rank $\binom{n}{k}$ with basis $e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}$ for all $1 \leq i_{1}<\ldots<i_{k} \leq n$.
6. (a) Show that if V is a representation of G (over a field) then $\Lambda^{k} V$ is also a G-representation. (b) Let V_{1} and V_{2} be G-representations. Show that

$$
\Lambda^{k}\left(V_{1} \oplus V_{2}\right) \simeq \sum_{a+b=k} \Lambda^{a} V_{1} \otimes \Lambda^{b} V_{2} .
$$

8. (a) Let V be a representation of G with character χ_{V}. Show that

$$
\chi_{\Lambda^{2} V}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right) .
$$

(b) Let V be the standard 4-dimensional irreducible representation of S_{5}. Show that $\Lambda^{2} V$ is an irreducible 6 -dimensional representation.
9. Let V be an irreducible representation of a finite group G. Show that there exists a unique G-invariant hermitian inner product on V.

[^0]10. Show that the columns of the character matrix are orthogonal, and more precisely that
$$
\sum_{\chi} \chi(g) \overline{\chi(g)}=\frac{|G|}{c(g)},
$$
where the summation is over all irreducible characters of G and $c(g)$ is the number of elements of G conjugate to g. Also show that
$$
\sum_{\chi} \chi(g) \overline{\chi\left(g^{\prime}\right)}=0
$$
if g and g^{\prime} are not conjugate.
11. In this problem $k=\mathbb{F}_{q}$ is a finite field with $q=p^{n}$ elements. Let G be a p-group. Show that the trivial representation is the only irreducible representation of G over k.
12. For any two 2-dimensional representations V_{1} and V_{2} of D_{11}, decompose $V_{1} \otimes V_{2}$ as a direct sum of irreducible representations.
13. Let V be a faithful representation of G (i.e. the homomorphism $G \rightarrow$ $\mathrm{GL}(V)$ is injective). Show that any irreducible representation of G is contained in a tensor power $V^{\otimes n}$ for some n.

[^0]: ${ }^{0}$ This homework is due before class on Monday May 3. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade two of the problems.

