ALGEBRA 612, SPRING 2010. HOMEWORK 7

In this worksheet R is a ring and $k=\bar{k}$ is an algebraically closed field.

1. Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such that f is irreducible and $V(f) \subset V(g)$. Show that f divides g.
2. Let $\alpha: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ be a morphism given by polynomials f and g in $k[x, y]$. (a) Show that if α is an isomorphism then the polynomial

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{\partial f(x, y)}{\partial \partial x} & \frac{\partial g(x, y)}{\partial \partial x} \\
\frac{\partial f(x, y)}{\partial y} & \frac{\partial g(x, y)}{\partial y}
\end{array}\right]
$$

is a nonzero constant (the converse of this is a famous open problem). (b) Give an example when α is an isomorphism but polynomials f, g are not both linear polynomials.
3. Let $X \subset \mathbb{A}^{2}$ be defined by equations $x^{2}+y^{2}=1$ and $x=1$. Is it true that $I(X)=(f, g)$?
4. (a) Let $X \subset \mathbb{A}^{2}$ be a cuspidal cubic $x^{2}=y^{3}$. Let $f: \mathbb{A}^{1} \rightarrow X$ be defined by formulas $t \mapsto\left(t^{3}, t^{2}\right)$. Is it an isomorphism? (b) Is a hyperbola $x y=1$ isomorphic to \mathbb{A}^{1} ?
5. Consider the morphism $\mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ defined by formulas $(x, y) \mapsto(x, x y)$. Is the image Zariski closed? Zariski open? Zariski dense?
6. Show that the category of irreducible algebraic sets and morphisms between them is equivalent to the category of finitely generated k-algebras without zero-divisors and homomorphisms between them.
7. Consider the morphism $\alpha: \mathbb{A}^{1} \rightarrow \mathbb{A}^{n}$ given by $t \mapsto\left(t, t^{2}, \ldots, t^{n}\right)$. Show that α induces an isomorphism between \mathbb{A}^{1} and $V(I)$, where I is generated by 2×2 minors of the following matrix

$$
\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & \ldots x_{n-1} \\
x_{1} & x_{2} & x_{3} & \ldots x_{n}
\end{array}\right]
$$

In the problems $8-11$, let S be a multiplicative system in R.
8. Let M_{1} and M_{2} be submodules of an R-module N. Show that
(a) $\quad\left(S^{-1} M_{1}\right)+\left(S^{-1} M_{2}\right)=S^{-1}\left(M_{1}+M_{2}\right)$;
(b) $\quad\left(S^{-1} M_{1}\right) \cap\left(S^{-1} M_{2}\right)=S^{-1}\left(M_{1} \cap M_{2}\right)$;
(c) if $M_{1} \supset M_{2}$ then $S^{-1}\left(M_{1} / M_{2}\right) \simeq\left(S^{-1} M_{1}\right) /\left(S^{-1} M_{2}\right)$.
9. Let M be a finitely generated R-module. Let Ann $M=\{r \in R \mid r M=0\}$. Show that

$$
S^{-1}(\operatorname{Ann} M) \simeq \operatorname{Ann}\left(S^{-1} M\right) .
$$

10. Let M_{1} and M_{2} be R-modules. Show that

$$
S^{-1}\left(M_{1} \otimes_{R} M_{2}\right) \simeq\left(S^{-1} M_{1}\right) \otimes_{S^{-1} R}\left(S^{-1} M_{2}\right) .
$$

[^0]11. Show that the nilradical of $S^{-1} R$ is isomorphic to the localization of the nilradical of R.
12. (a) Let M be an R-module. Show that $M=0$ if and only if $M_{\mathfrak{m}}=0$ for any maximal ideal $\mathfrak{m} \subset R$. (b) The ring is called reduced if its nilradical is trivial. Show that the ring R is reduced if and only if $R_{\mathfrak{p}} \mathrm{s}$ reduced for any prime ideal $\mathfrak{p} \subset R$.
13. Let R be an integral domain. For any R-module M, let
$$
T(M)=\{x \in M \mid r x=0 \text { for some } r \in R\}
$$
be the torsion submodule of M. (a) Show that $M \rightarrow T(M)$ is a left-exact functor $\operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{R}$. (b) Show that $T(M)=0$ if and only if $T(M)_{\mathfrak{m}}=0$ for any maximal ideal $\mathfrak{p} \subset R$.
14. Let R be a local Noetherian ring with a maximal ideal \mathfrak{m}. Show that
$$
\bigcap_{n \geq 1} \mathfrak{m}^{n}=0
$$
15. Show that the Nakayama's lemma fails if the module M is not assumed to be finitely generated.
16. Let M and N be finitely generated modules over a local ring R. Show that if $M \otimes_{R} N=0$ then $M=0$ or $N=0$.
17. For any $f \in R$, let $D(f) \subset$ Spec R be the complement of the closed set $V(f)$. (a) Show that sets $D(f)$ form a base of Zariski topology, i.e. any Zariski open subset of Spec R can be expressed as a union of open sets of the form $D(f)$. (b) Show that if $D(f)=D(g)$ then $R[1 / f] \simeq R[1 / g]$.
18. Let $x, y \in \operatorname{Spec} R$. (a) Show that there exists either a neighborhood of x that does not contain y or a neighborhood of y that does not contain x. (b) Show that the nilradical of R is a prime ideal if and only if $\operatorname{Spec} R$ contains a "generic point" η such that $\bar{\eta}=\operatorname{Spec} R$.
19. For any $\mathfrak{p} \in \operatorname{Spec} R$, let $k(\mathfrak{p})$ be the quotient field of R / \mathfrak{p}. This field is called the residue field at \mathfrak{p}. (a) Show that
$$
k(\mathfrak{p}) \simeq R_{p} / \mathfrak{p} R_{\mathfrak{p}}
$$
(b) Let M be a finitely-generated R-module. The $k(\mathfrak{p})$-vector space
$$
M \otimes_{R} k(\mathfrak{p})
$$
is called the fiber of M at \mathfrak{p}. Show that if $M \otimes_{R} k(\mathfrak{p})=0$ for any $\mathfrak{p} \in \operatorname{Spec} R$ then $M=0$. (c) Let $R=\mathbb{Z}$ and let M be a finitely generated Abelian group. Compute all fibers of M on $\operatorname{Spec} Z$ and verify (b) in this case.

[^0]: ${ }^{0}$ This homework is due before class on Monday April 12. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade two of the problems.

