ALGEBRA 612, SPRING 2010. HOMEWORK 6

In this worksheet, k denotes a field and R denotes a commutative ring. Do not assume that k is algebraically closed unless otherwise stated. **1.** Let $S \subset R$ be a multiplicative system. Consider the covariant functor Rings \rightarrow Sets that sends a ring A to the set of all homomorphisms $f : R \rightarrow A$ such that f(s) is a unit for any $s \in S$ (describe its action of homomorphisms $A \rightarrow A'$ yourself). Show that this functor is representable. **2.** Show that a ring A is local if and only if its non-invertible elements form an ideal.

3. Let $f : A \to B$ be a homomorphism of rings. If I is an ideal of B then we define its contraction as $I^c = f^{-1}(I)$. If I is an ideal of A then we define its extension as $I^e = Bf(I)$. (a) Is it true that any ideal of B is extended? (b) Is it true that $(I^c)^e = I$ for any ideal I of B? (c) Show that the maps $I \to I^e$ and $I \to I^c$ induce a bijection between the set of contracted ideals in A and the set of extended ideals in B.

4. For any ideal *I* of *R*, let $V(I) = \{\mathfrak{p} \in \operatorname{Spec} R | I \subset \mathfrak{p}\}$. (a) Show that $\operatorname{Spec} R$ satisfies all axioms of a topological space with closed subsets V(I). This topology is called *Zariski topology*. (b) Show that the pull-back f^* : $\operatorname{Spec} B \to \operatorname{Spec} A$ is continuous in Zariski topology.

5. Let $S \subset R$ be a multiplicative subset and let $f : R \to S^{-1}R$ be a canonical homomorphism. (a) Show that the pull-back map $f^* \operatorname{Spec} S^{-1}R \to \operatorname{Spec} R$ is injective. (b) Let $I \subset R$ be an ideal. Show that $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$.

6. Let $\mathfrak{p} \subset R$ be a prime ideal. Show that the image of Spec $R_{\mathfrak{p}}$ in Spec R is equal to the intersection of all open subsets in Spec R that contain a point \mathfrak{p} . **7.** Let Σ be the set of all multiplicative subsets of R. Show that Σ contains maximal (by inclusion) subsets and that $S \in \Sigma$ is maximal if and only if $R \setminus S$ is a minimal prime ideal.

8. Describe (a) Spec $\mathbb{Z}/n\mathbb{Z}$; (b) Spec \mathbb{Z}_5 (5-adic numbers).

9. Let $I \subset R$ be an ideal. Show that

$$\sqrt{I} = igcap_{\substack{\mathfrak{p} \in \operatorname{Spec} R \ I \subset \mathfrak{p}}} \mathfrak{p}.$$

10. Let $\sqrt{0} \subset R$ be the nil-radical. Show that the canonical pull-back map $\operatorname{Spec} R/\sqrt{0} \to \operatorname{Spec} R$ is a homeomorphism (first show that it is a bijection of sets).

11. Suppose *R* is a direct product of rings $R_1 \times \ldots \times R_k$. Show that Spec *R* is homeomorphic to the disjoint union of spectra Spec $R_1, \ldots, \text{Spec } R_k$.

12. (a) Show that the intersection of closed subsets $\bigcap_{\alpha} V(I_{\alpha})$ of Spec *R* is empty if and only if $\sum_{\alpha} I_{\alpha} = R$. (b) Show that Spec *R* is quasi-compact, i.e. any open covering of Spec *R* has a finite sub-covering.

⁰This homework is due before class on Monday April 5. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade *two* of the problems.

13. Let $f : A \to B$ be a homomorphism of rings. (a) Show that the pullback $f^* : \operatorname{MaxSpec} B \to \operatorname{MaxSpec} A$ is not always well-defined. (b) If A and B are finitely generated k-algebras then the pull-back for MaxSpec is well-defined (do not assume that k is algebraically closed, although it helps to consider this case first).

14. Let J, I_1, \ldots, I_r be ideals of R such that $J \subset I_1 \cup \ldots \cup I_r$. Show that J is in fact contained in one of the ideals I_k if any of the following conditions are satisfied. (a) r = 2. (b) All ideals I_1, \ldots, I_r are prime (Hint: prove the contrapositive statement by induction on r).

15. Let J, I_1, \ldots, I_r be ideals of R such that $J \subset I_1 \cup \ldots \cup I_r$. Show that J is in fact contained in one of the ideals I_k if any of the following conditions are satisfied. (a) At most two of the ideals I_1, \ldots, I_r are not prime. (b) R contains an infinite field.