ALGEBRA 612, SPRING 2010. HOMEWORK 4

1. Show that S_n is solvable if and only if $n \leq 4$.

2. (a) Let $f(x) \in K[x]$ be an irreducible separable polynomial with roots

$$\alpha = \alpha_1, \alpha_2, \dots, \alpha_n \in K$$

Suppose that there exist rational functions $\theta_1(x), \ldots, \theta_n(x) \in K(x)$ such that $\alpha_i = \theta_i(\alpha)$ for any *i*. Suppose also that

$$\theta_i(\theta_j(\alpha)) = \theta_j(\theta_i(\alpha))$$

for any *i*, *j*. Show that $K(\alpha)/K$ is solvable in radicals. Hint: this case was examined by this famous Norwegian mathematician:

(b) Give an example of the situation as in part (a) with $K = \mathbb{Q}$ and such that the Galois group of f(x) is not cyclic. Give a specific polynomial f(x), and compute its roots and functions θ_i .

3. Let F/K be a finite Galois extension and let L be an intermediate subfield between F and K. Let H be the subgroup of Gal(F/K) mapping L to itself. Prove that H is the normalizer of Gal(F/L) in Gal(F/K).

4. Let F/K be a Galois extension with a cyclic Galois group *G*. Let σ be a generator of *G*. Show that

$$\operatorname{Ker}[\operatorname{Tr}_{F/K}] = \operatorname{Im}[\operatorname{Id}_F - \sigma].$$

In other words, if $\beta \in F$ then $\operatorname{Tr}_{F/K}(\beta) = 0$ iff $\beta = \alpha - \sigma(\alpha)$ for some $\alpha \in F$. 5. Consider the extension $\mathbb{Q} \subset F = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$, where *p* is a prime and ζ_p is the primitive *p*-th root of unity. Show that $\operatorname{Gal}(F/\mathbb{Q})$ is isomorphic the semidirect product of $\mathbb{Z}/p\mathbb{Z}$ and \mathbb{F}_p^* .

6. Let F/K be a Galois extension with a cyclic Galois group G of order p, where char K = p. Let σ be a generator of G. (a) Show that there exists $\alpha \in F$ such that $\sigma(\alpha) = \alpha + 1$. (b) Show that $F = K(\alpha)$, where α is a root of $x^p - x - a$ for some $a \in K$.

7. Suppose that char K = p and let $a \in K$. Show that the polynomial $x^p - x - a$ either splits in K or is irreducible. Show that in the latter case its Galois group is cyclic of order p.

⁰This homework is due before class on Monday March 1. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade *two* of the problems. There will be an in-class midterm on Galois Theory on Wednesday, March 3.

8. Let F/K be a Galois extension with a cyclic Galois group G. Let σ be a generator of G. Let $\beta \in F$. (a) There exists $\theta \in F$ such that $\alpha \neq 0$, where

$$\alpha = \theta + \beta \sigma(\theta) + \beta \sigma(\beta) \sigma^2(\theta) + \beta \sigma(\beta) \sigma^2(\beta) \sigma^3(\theta) + \ldots + \beta \sigma(\beta) \ldots \sigma^{n-2}(\beta) \sigma^{n-1}(\theta).$$
(b) Show that $N_{F/K}(\beta) = 1$ if and only if $\beta = \alpha / \sigma(\alpha)$ for some $\alpha \in F$.

9. Let f(x) be the minimal polynomial over \mathbb{Q} of $\sqrt[5]{\sqrt[3]{17} + \sqrt[4]{37}}$, where all of the indicated radicals are real. Show that the splitting field of f(x) is solvable over \mathbb{Q} .

10. Let $K = \mathbb{Q}(\zeta)$, where ζ is a primitive *n*-th root of unity. Show that if $n = p^r$ for some prime *p* then $N_{K/\mathbb{Q}}(1 - \zeta) = p$.

11. Suppose that F/K and L/F are solvable extensions (recall that this does not mean that these extensions are Galois). Is it true that L/K is a solvable extension?

12. Prove that there exist infinitely many pairs of integers (a, b) such that $-4a^3 - 27b^2$ is a square in \mathbb{Z} .

13. Let *n* and *m* be coprime integers. Show that $\Phi_n(x)$ (the *n*-th cyclotomic polynomial) is irreducible over $\mathbb{Q}(\zeta_m)$.

14. Let *G* be a subgroup of the group of automorphisms of $\mathbb{C}(z)$ (rational functions in one variable) generated by automorphisms $z \mapsto 1 - z$ and $z \mapsto 1/z$. Show that *G* has 6 elements and that the field of invariants $\mathbb{C}(z)^G$ is generated by one function. Find this function.

15. Let $f(x) \in K[x]$ be an irreducible polynomial of degree 5 such that its discriminant is a square in K. Find all possible Galois groups for its splitting field. For each possible Galois group, give an example of $f(x) \in \mathbb{Q}[x]$ with this Galois group.