ALGEBRA 612, SPRING 2010. HOMEWORK 4

1. Show that S_{n} is solvable if and only if $n \leq 4$.
2. (a) Let $f(x) \in K[x]$ be an irreducible separable polynomial with roots

$$
\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \bar{K} .
$$

Suppose that there exist rational functions $\theta_{1}(x), \ldots, \theta_{n}(x) \in K(x)$ such that $\alpha_{i}=\theta_{i}(\alpha)$ for any i. Suppose also that

$$
\theta_{i}\left(\theta_{j}(\alpha)\right)=\theta_{j}\left(\theta_{i}(\alpha)\right)
$$

for any i, j. Show that $K(\alpha) / K$ is solvable in radicals. Hint: this case was examined by this famous Norwegian mathematician:

(b) Give an example of the situation as in part (a) with $K=\mathbb{Q}$ and such that the Galois group of $f(x)$ is not cyclic. Give a specific polynomial $f(x)$, and compute its roots and functions θ_{i}.
3. Let F / K be a finite Galois extension and let L be an intermediate subfield between F and K. Let H be the subgroup of $\operatorname{Gal}(F / K)$ mapping L to itself. Prove that H is the normalizer of $\operatorname{Gal}(F / L)$ in $\operatorname{Gal}(F / K)$.
4. Let F / K be a Galois extension with a cyclic Galois group G. Let σ be a generator of G. Show that

$$
\operatorname{Ker}\left[\operatorname{Tr}_{F / K}\right]=\operatorname{Im}\left[\operatorname{Id}_{F}-\sigma\right] .
$$

In other words, if $\beta \in F$ then $\operatorname{Tr}_{F / K}(\beta)=0$ iff $\beta=\alpha-\sigma(\alpha)$ for some $\alpha \in F$. 5. Consider the extension $\mathbb{Q} \subset F=\mathbb{Q}\left(\zeta_{p}, \sqrt[p]{2}\right)$, where p is a prime and ζ_{p} is the primitive p-th root of unity. Show that $\operatorname{Gal}(F / \mathbb{Q})$ is isomorphic the semidirect product of $\mathbb{Z} / p \mathbb{Z}$ and \mathbb{F}_{p}^{*}.
6. Let F / K be a Galois extension with a cyclic Galois group G of order p, where char $K=p$. Let σ be a generator of G. (a) Show that there exists $\alpha \in F$ such that $\sigma(\alpha)=\alpha+1$. (b) Show that $F=K(\alpha)$, where α is a root of $x^{p}-x-a$ for some $a \in K$.
7. Suppose that char $K=p$ and let $a \in K$. Show that the polynomial $x^{p}-x-a$ either splits in K or is irreducible. Show that in the latter case its Galois group is cyclic of order p.

[^0]8. Let F / K be a Galois extension with a cyclic Galois group G. Let σ be a generator of G. Let $\beta \in F$. (a) There exists $\theta \in F$ such that $\alpha \neq 0$, where
$\alpha=\theta+\beta \sigma(\theta)+\beta \sigma(\beta) \sigma^{2}(\theta)+\beta \sigma(\beta) \sigma^{2}(\beta) \sigma^{3}(\theta)+\ldots+\beta \sigma(\beta) \ldots \sigma^{n-2}(\beta) \sigma^{n-1}(\theta)$.
(b) Show that $N_{F / K}(\beta)=1$ if and only if $\beta=\alpha / \sigma(\alpha)$ for some $\alpha \in F$.
9. Let $f(x)$ be the minimal polynomial over \mathbb{Q} of $\sqrt[5]{\sqrt[3]{17}+\sqrt[4]{37}}$, where all of the indicated radicals are real. Show that the splitting field of $f(x)$ is solvable over \mathbb{Q}.
10. Let $K=\mathbb{Q}(\zeta)$, where ζ is a primitive n-th root of unity. Show that if $n=p^{r}$ for some prime p then $N_{K / \mathbb{Q}}(1-\zeta)=p$.
11. Suppose that F / K and L / F are solvable extensions (recall that this does not mean that these extensions are Galois). Is it true that L / K is a solvable extension?
12. Prove that there exist infinitely many pairs of integers (a, b) such that $-4 a^{3}-27 b^{2}$ is a square in \mathbb{Z}.
13. Let n and m be coprime integers. Show that $\Phi_{n}(x)$ (the n-th cyclotomic polynomial) is irreducible over $\mathbb{Q}\left(\zeta_{m}\right)$.
14. Let G be a subgroup of the group of automorphisms of $\mathbb{C}(z)$ (rational functions in one variable) generated by automorphisms $z \mapsto 1-z$ and $z \mapsto 1 / z$. Show that G has 6 elements and that the field of invariants $\mathbb{C}(z)^{G}$ is generated by one function. Find this function.
15. Let $f(x) \in K[x]$ be an irreducible polynomial of degree 5 such that its discriminant is a square in K. Find all possible Galois groups for its splitting field. For each possible Galois group, give an example of $f(x) \in$ $\mathbb{Q}[x]$ with this Galois group.

[^0]: ${ }^{0}$ This homework is due before class on Monday March 1. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade two of the problems. There will be an in-class midterm on Galois Theory on Wednesday, March 3.

