ALGEBRA 612, SPRING 2010. HOMEWORK 3

1. Let $p_{1}, \ldots, p_{r} \in \mathbb{Z}$ be distinct primes and let $K=\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right)$. (a) Compute the Galois group $\operatorname{Gal}(K / \mathbb{Q})$. (b) Describe explicitly all intermediate subfields L such that either $[L: \mathbb{Q}]=2$ or $[K: L]=2$. (c) Describe explicitly all intermediate subfields when $r=4$.
2. Let p be an odd prime and let a be an integer coprime to p. Show that the quadratic symbol $\left(\frac{a}{p}\right)$ is equal to $a^{\frac{p-1}{2}}$ modulo p.
3. Consider a tower $K \subset L \subset F$. Suppose L / K and F / L are finite Galois extensions. Is it true that F / K is Galois?
4. Let $\alpha_{r}=\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}$ (r radicals). (a) Show that the minimal polynomial $f_{r}(x) \in \mathbb{Q}[x]$ of α_{r} can be computed inductively as follows: $f_{r}(x)=$ $f_{r-1}\left(x^{2}-2\right)$, where $f_{1}(x)=x^{2}-2$. Describe all roots of $f_{r}(x)$. (b) Show that $\mathbb{Q}\left(\alpha_{2}\right) / \mathbb{Q}$ is a Galois extension with a Galois group \mathbb{Z}_{4}.
5. Let $K \subset L \subset \bar{K}$ and suppose that L / K is separable. Show that there exists the unique minimal (by inclusion) Galois extension F / K such that $L \subset F \subset \bar{K}$. Show that if L / K is finite then F / K is finite.
6. (a) Let \bar{K} be an algebraic closure of K. Show that there exists the unique maximal (by inclusion) subfield $K \subset K^{a b} \subset \bar{K}$ such that $K^{a b} / K$ is Galois and the Galois group $\operatorname{Gal}\left(K^{a b} / K\right)$ is Abelian. (b) Deduce from the Kronecker-Weber Theorem that

$$
\mathbb{Q}^{a b}=\bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{n}\right)
$$

7. Let F / K be a finite Galois extension with a Galois group G. Let $H \subset G$ be a subgroup and let $L=F^{H}$. Show that the number of fields of the form $g(L)$ for $g \in G$ is equal to $\frac{|G|}{\left|N_{G}(H)\right|}$.
8. Let F / K be a finite Galois extension with a Galois group G. Let $H \subset G$ be a subgroup and let $L=F^{H}$. Let $N=\bigcap_{g \in G} g H g^{-1}$. Prove that N is normal in G and characterize the field F^{N} in terms of the tower $K \subset L \subset F$.
9. Let F / K be a splitting field of a polynomial $f(x)=\left(x-a_{i}\right) \ldots\left(x-a_{r}\right) \in K[x]$ without multiple roots. Let

$$
\Delta=\prod_{1 \leq i<j \leq n}\left(a_{i}-a_{j}\right)^{2}
$$

be the discriminant of $f(x)$. (a) Show that $\Delta \in K$. (b) Let $G \subset S_{n}$ be the Galois group of F / K acting on roots of $f(x)$. Show that $G \subset A_{n}$ if and only if Δ is a square in K.
10. Let $F=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ be the field of rational functions in n variables. (a) Suppose A_{n} acts on F by even permutations of variables. Show that $F^{A_{n}}$ is generated

[^0]over \mathbb{C} by elementary symmetric functions $\sigma_{1}, \ldots, \sigma_{n}$ in variables x_{1}, \ldots, x_{n} and by $\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$. (b) Suppose $n=4$ and suppose D_{4} acts on F by permutations of variables (here we identify variables with vertices of the square). Show that $F^{D_{4}}$ is generated over \mathbb{C} by 4 functions and find them.
11. Let G be a finite Abelian group. (a) Show that there exists a positive integer n and a subgroup $\Gamma \subset \mathbb{Z}_{n}^{*}$ such that $G \simeq \mathbb{Z}_{n}^{*} / \Gamma$. (b) Show that there exists a Galois extension K / \mathbb{Q} with a Galois group G. (It is a famous open problem to remove an Abelian assumption from this exercise).
12. Compute the Galois group of the polynomial (a) $x^{3}-x-1$ over $\mathbb{Q}(\sqrt{-23})$; (b) $x^{3}-2 t x+t$ over $\mathbb{C}(t)$ (the field of rational functions in one variable).
13. Compute the Galois group of the polynomial $x^{4}-4 x^{2}-1$ over \mathbb{Q}.
14. Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial such that one of its complex roots has absolute value 1 . Show that $f(x)$ has even degree and is palindromic: if $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ then $a_{0}=a_{n}, a_{1}=a_{n-1}$, etc.
15. Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial, a a non-zero integer, p a prime. Assume that p does not divide n. Prove that $p \mid \Phi_{n}(a)$ if and only if a has order n in $(\mathbb{Z} / p \mathbb{Z})^{*}$.
16. Let $\left.K=\mathbb{C}\left[z^{-1}, z\right]\right]$ be the field of Laurent series (series in z, polynomials in z^{-1}). Let $\left.K_{m}=\mathbb{C}\left[z^{-\frac{1}{m}}, z^{\frac{1}{m}}\right]\right] \supset K$. (a) Show that K_{m} / K is Galois with a Galois group $\mathbb{Z} / m \mathbb{Z}$. (b) Show that any Galois extension F / K with a Galois group $\mathbb{Z} / m \mathbb{Z}$ is isomorphic to K_{m}. (c) In the notation of Problem 6, show that
$$
K^{a b}=\bigcup_{m \geq 1} K_{m}
$$
the field of Puiseux series ${ }^{1}$.
17. Show that any group of order n is solvable, where (a) $n=p^{2} q$ and p, q are distinct primes; (b) $n=2 p q$ and p, q are odd primes.
18. Let M be a module over a ring R. A sequence of submodules
$$
M=M_{1} \supset M_{2} \supset \ldots \supset M_{r}=0
$$
is called a filtration of M (of length r). A module M is called simple if it does not contain any submodules other than 0 and itself. A filtration is called simple if each M_{i} / M_{i+1} is simple. A module M is said to be of finite length if it admits a simple finite filtration. Two filtrations of M are called equivalent if they have the same length and the same collection of subquotients $\left\{M_{1} / M_{2}, M_{2} / M_{3}, \ldots, M_{r-1} / M_{r}\right\}$ (up to isomorphism). Prove that if M has finite length then any two simple filtrations of M are equivalent and any filtration of M can be refined to a simple filtration.
19. Describe all Abelian groups G that fit into the exact sequence
$$
0 \rightarrow \mathbb{Z}_{n} \rightarrow G \rightarrow \mathbb{Z}_{m} \rightarrow 0
$$
(n and m are not necessarily coprime).

[^1]
[^0]: ${ }^{0}$ This homework is due before class on Monday Feb 22. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. You can ask the grader not to grade two of the problems.

[^1]: ${ }^{1}$ Newton proved that $K^{a b}$ is in fact algebraically closed.

