ALGEBRA 612, SPRING 2010. HOMEWORK 2

In this set we fix a finite field extension $K \subset F$. Let \bar{K} be an algebraic closure of K.

1. Let $\alpha \in F$ and let $f(x)$ be its minimal polynomial. Suppose that α is not separable over K. (a) Show that char $K=p$ and $f(x)=g\left(x^{p}\right)$ for some polynomial $g \in K[x]$. (b) Show that there exists $k \geq 1$ such that all roots of $f(x)$ in \bar{K} have multiplicity p^{k} and $\alpha^{p^{k}}$ is separable over K.
2. (a) Show that elements of F separable over K form a field L. We define

$$
[F: K]_{s}:=[L: K] .
$$

(b) Prove that the number of different inclusions of F in the algebraic closure of K over K is equal to $[F: K]_{s}$.
3. Show that $[F: K]_{s}=1$ if and only if char $K=p$ and F is generated over K by elements $\alpha_{1}, \ldots, \alpha_{r}$ such that the minimal polynomial of each α_{i} has the form $x^{p^{k_{i}}}-a_{i}$ for some $a_{i} \in K$ and a positive integer k_{i}.
4. Show that the primitive element theorem does not necessarily hold for finite extensions that are not separable.
5. A field k is called perfect if either char $k=0$ or char $k=p$ and the Frobenius homomorphism $F: k \rightarrow k$ is an isomorphism. Show that if k is perfect then any algebraic extension of k is separable over k and perfect.
6. Let $A B C$ be an isosceles triangle with $A B=B C$. Let $A D$ be a bisector of the angle $B A C$. Suppose that (a) $A D+B D=A C$ or (b) $B D=A C$. Find the angle measure of the angle $B A C$ in degrees. (Hint: You can either use high school geometry (but the solution will be tricky) or algebra, in which case the Law of Sines could be helpful.)
7. Let F be a splitting field of the polynomial $f \in K[x]$ of degree n. Show that $[F: K]$ divides n ! (do not assume that F is separable over K).
8. Show that any element in a finite field is a sum of two squares in that field.
9. Let $F \subset \bar{K}$ be a finite Galois extension of K and let $L \subset \bar{K}$ be any finite extension of K. Consider the natural K-linear map $L \otimes_{K} F \rightarrow \bar{K}$. (a) Show that its image is a field, that we will denote by $L F$. (b) Show that $L F$ is Galois over L. (c) Show that $\operatorname{Gal}(L F / L)$ is isomorphic to $\operatorname{Gal}(F / L \cap F)$.
10. Find the minimal polynomial over \mathbb{Q} of $\sqrt[2]{3}+\sqrt[3]{3}$. Compute the Galois group of its splitting field.

[^0]11. Let $a, b \in K$ and suppose that $f(x)=x^{3}+a x+b$ has no roots in K. Let F be a splitting field of $f(x)$. Assume that char $K \neq 3$. Show that
\[

\operatorname{Gal}(F / K) \simeq $$
\begin{cases}S_{3} & \text { if }-4 a^{3}-27 b^{2} \text { is not a square in } K \\ \mathbb{Z}_{3} & \text { if }-4 a^{3}-27 b^{2} \text { is a square in } K\end{cases}
$$
\]

12. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree p. Suppose that $f(x)$ has exactly $p-2$ real roots. Show that the Galois group of the splitting field of $f(x)$ is S_{p}.
13. For any $d \geq 2$, prove existence of an irreducible polynomial in $\mathbb{Q}[x]$ of degree d with exactly $d-2$ real roots (Hint: take some obvious reducible polynomial with exactly $d-2$ real roots and perturb it a little bit to make it irreducible).
14. Let G be any finite group. Show that there exist finite extensions $\mathbb{Q} \subset$ $K \subset F$ such that F / K is a Galois extension with a Galois group G.
15. Let F be a splitting field of the polynomial $f(x) \in K[x]$. Show that Gal F / K acts transitively on roots of $f(x)$ if and only if $f(x)$ is irreducible (do not assume that $f(x)$ is separable).
16. Let F be a splitting field of a biquadratic polynomial $x^{4}+a x^{2}+b \in K[x]$. Show that $\operatorname{Gal}(F / K)$ is isomorphic to a subgroup of D_{4}.

[^0]: ${ }^{0}$ This homework is due before class on Monday Feb 8. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

