ALGEBRA 611, SPRING 2010. HOMEWORK 1⁽¹⁾

In this set we fix a field extension $K \subset F$.

1. Let *R* be an infinite domain and let $f \in R[x]$. Prove that $f(r) \neq 0$ for infinitely many $r \in R$. What if *R* is not necessarily a domain? **2.** (a) Show $\alpha \in F$ is algebraic over *K* if and only if *F* contains a finite-dimensional *K*-vector subspace *L* (not necessarily a subfield) such that

$$\alpha \cdot L \subset L.$$

(b) Find the minimal polynomial of $\sqrt{2} + \sqrt{5}$ over \mathbb{Q} .

3. (a) Let *R* be a domain and let $R \subset K$ be its field of fractions. Show that *K* satisfies the following universal property: for any injective homomorphism $\psi : R \to F$ to a field, there exists a unique homomorphism of fields $K \to F$ that extends ψ . (b) Let Fields be the category of fields (what can you say about morphisms in this category?). Let *R* be a domain and let F_R : Fields \to Sets be a covariant functor that sends any field *k* to the set of injective homomorphisms $R \to k$. This definition is not complete: give a complete definition of this functor and show that it is representable.

4. (a) Show that $f(x) = x^3 + x^2 + x + 3$ is irreducible over \mathbb{Q} . (b) Consider the field $F = K(\alpha)$, where α is a root of f(x). Express $\frac{1}{2-\alpha+\alpha^2}$ as a \mathbb{Q} -linear combination of 1, α , and α^2 .

5. Find the degree (over \mathbb{Q}) of the splitting field of (a) $x^4 + x^3 + x^2 + x + 1$. (b) $x^4 - 2$.

6. For all positive integers n and m, compute the degree $[\mathbb{Q}(\sqrt{n}, \sqrt{m}) : \mathbb{Q}]$. **7.** Let $K \subset F$ be an algebraic extension and let R be a subring of F that contains K. Show that R is a field.

8. Let $f(x) \in K[x]$ be a polynomial of degree 3. Show that if f(x) has a root in a field extension $K \subset F$ of degree 2 then f(x) has a root in K.

9. Let $\alpha, \beta \in F$ be algebraic over K, let f(x) and g(x) be their minimal polynomials, and suppose that deg f and deg g are coprime. Prove that f(x) is irreducible in $K(\beta)[x]$.

10. Find the splitting field of $x^p - 1$ over \mathbb{F}_p .

11. Let $K \supset \mathbb{Q}$ be a splitting field of a cubic polynomial $f(x) \in \mathbb{Q}[x]$. Show that if $[K : \mathbb{Q}] = 3$ then f(x) has 3 real roots.

¹This homework is due before class on Monday Feb 1. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade *two* of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

12. Let \mathbb{F}_{p^n} be a finite field with p^n elements and let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be the Frobenius map, $F(x) = x^p$. Show that F is diagonalizable (as an \mathbb{F}_p -linear operator) if and only if n divides p - 1.

13. Let $F = K(\alpha)$ and suppose that [F : K] is odd. Show that $F = K(\alpha^2)$. **14.** Let $f(x) \in K[x]$ be an irreducible polynomial and let $g(x) \in K[x]$ be any non-constant polynomial. Let p(x) be a non-constant polynomial that divided f(g(x)). Show that deg f divides deg p.

15. Show that the polynomial $x^5 - t$ is irreducible over the field $\mathbb{C}(t)$ (here *t* is a variable). Describe a splitting field.

16. Let \mathbb{F}_q be a finite field with q elements (q is not necessarily prime). Compute the sum $\sum_{a \in \mathbb{F}_q} a^k$ for any integer k. **17.** Show that the algebraic closure of \mathbb{F}_p is equal to the union of its finite

17. Show that the algebraic closure of \mathbb{F}_p is equal to the union of its finite subfields:

$$\bar{\mathbb{F}}_p = \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}.$$