ALGEBRA 611, SPRING 2010. HOMEWORK $1{ }^{(1)}$

In this set we fix a field extension $K \subset F$.

1. Let R be an infinite domain and let $f \in R[x]$. Prove that $f(r) \neq 0$ for infinitely many $r \in R$. What if R is not necessarily a domain?
2. (a) Show $\alpha \in F$ is algebraic over K if and only if F contains a finitedimensional K-vector subspace L (not necessarily a subfield) such that

$$
\alpha \cdot L \subset L .
$$

(b) Find the minimal polynomial of $\sqrt{2}+\sqrt{5}$ over \mathbb{Q}.
3. (a) Let R be a domain and let $R \subset K$ be its field of fractions. Show that K satisfies the following universal property: for any injective homomorphism $\psi: R \rightarrow F$ to a field, there exists a unique homomorphism of fields $K \rightarrow$ F that extends ψ. (b) Let Fields be the category of fields (what can you say about morphisms in this category?). Let R be a domain and let F_{R} : Fields \rightarrow Sets be a covariant functor that sends any field k to the set of injective homomorphisms $R \rightarrow k$. This definition is not complete: give a complete definition of this functor and show that it is representable.
4. (a) Show that $f(x)=x^{3}+x^{2}+x+3$ is irreducible over \mathbb{Q}. (b) Consider the field $F=K(\alpha)$, where α is a root of $f(x)$. Express $\frac{1}{2-\alpha+\alpha^{2}}$ as a \mathbb{Q}-linear combination of $1, \alpha$, and α^{2}.
5. Find the degree (over \mathbb{Q}) of the splitting field of (a) $x^{4}+x^{3}+x^{2}+x+1$. (b) $x^{4}-2$.
6. For all positive integers n and m, compute the degree $[\mathbb{Q}(\sqrt{n}, \sqrt{m}): \mathbb{Q}]$.
7. Let $K \subset F$ be an algebraic extension and let R be a subring of F that contains K. Show that R is a field.
8. Let $f(x) \in K[x]$ be a polynomial of degree 3. Show that if $f(x)$ has a root in a field extension $K \subset F$ of degree 2 then $f(x)$ has a root in K.
9. Let $\alpha, \beta \in F$ be algebraic over K, let $f(x)$ and $g(x)$ be their minimal polynomials, and suppose that $\operatorname{deg} f$ and $\operatorname{deg} g$ are coprime. Prove that $f(x)$ is irreducible in $K(\beta)[x]$.
10. Find the splitting field of $x^{p}-1$ over \mathbb{F}_{p}.
11. Let $K \supset \mathbb{Q}$ be a splitting field of a cubic polynomial $f(x) \in \mathbb{Q}[x]$. Show that if $[K: \mathbb{Q}]=3$ then $f(x)$ has 3 real roots.

[^0]12. Let $\mathbb{F}_{p^{n}}$ be a finite field with p^{n} elements and let $F: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ be the Frobenius map, $F(x)=x^{p}$. Show that F is diagonalizable (as an \mathbb{F}_{p}-linear operator) if and only if n divides $p-1$.
13. Let $F=K(\alpha)$ and suppose that $[F: K]$ is odd. Show that $F=K\left(\alpha^{2}\right)$.
14. Let $f(x) \in K[x]$ be an irreducible polynomial and let $g(x) \in K[x]$ be any non-constant polynomial. Let $p(x)$ be a non-constant polynomial that divided $f(g(x))$. Show that $\operatorname{deg} f$ divides $\operatorname{deg} p$.
15. Show that the polynomial $x^{5}-t$ is irreducible over the field $\mathbb{C}(t)$ (here t is a variable). Describe a splitting field.
16. Let \mathbb{F}_{q} be a finite field with q elements (q is not necessarily prime). Compute the sum $\sum_{a \in \mathbb{F}_{q}} a^{k}$ for any integer k.
17. Show that the algebraic closure of \mathbb{F}_{p} is equal to the union of its finite subfields:
$$
\overline{\mathbb{F}}_{p}=\bigcup_{n=1}^{\infty} \mathbb{F}_{p^{n}}
$$

[^0]: ${ }^{1}$ This homework is due before class on Monday Feb 1 . The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

