ALGEBRA 611, FALL 2009. HOMEWORK 9⁽¹⁾

In this worksheet k denotes an arbitrary field and R denotes a ring (as usual, commutative and with 1).

1. Describe all prime ideals of (a) $\mathbb{Z}/24\mathbb{Z}$; (b) $\mathbb{R}[x]$.

2. (a) Show that $x^7 + 48x - 24$ is irreducible in $\mathbb{Q}[x]$. (b) Show that $x^3 + y^3 + z^3$ is irreducible in $\mathbb{C}[x, y, z]$. (c) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$ but reducible in K[x], where $K = \mathbb{Q}\left(\frac{1+\sqrt{5}}{2}\right)$.

3. If R is a domain then 0 is the minimal prime ideal. If R is not necessarily a domain, use Zorn's lemma to show that any prime ideal of R is contained in a minimal prime ideal.

4. A ring R is called Artinian if it satisfies (dcc) for ideals, i.e. any descending chain of ideals stabilizes. (a) Show that R is Artinian if and only if any set of ideals contains a minimal element. (b) Show that any finite ring is Artinian. (c) Show that an Artinian domain is a field.

5. (a) Show that a subgroup of \mathbb{Q}/\mathbb{Z} generated by $\sqrt{5}$ is dense (with respect to the usual topology on \mathbb{Q}/\mathbb{Z}). (b) Prove that a subring of k[x, y] generated by all monomials $x^n y^m$ such that $n/m < \sqrt{5}$ is not Noetherian.

6. Let *S* be a subset of lattice points (i.e. points with integral coordinates) in the first quadrant. Suppose that *S* satisfies the following property: if $(n,m) \in S$ then $(n+1,m) \in S$ and $(n,m+1) \in S$. Prove that *S* is a union of finitely many shifted quadrants, i.e. subsets of the form (n + a, m + b), where (n,m) is fixed and a, b are arbitrary nonnegative integers.

7. Prove that the ring k[[x, y]] of power series in two variables is Noetherian (Hint: imitate the proof of Hilbert's basis theorem).

8. Prove that if *R* is a UFD then the ring R[[x]] is a UFD.

9. This problem is a bit off-topic, but fun: (a) Start with any $x \equiv 1 \mod 4$ but $x \not\equiv 1 \mod 8$. Show that $x^{2^r} \equiv 1 \mod 2^{r+2}$ but $x^{2^r} \not\equiv 1 \mod 2^{r+3}$. (b) Show that the multiplicative group $(\mathbb{Z}/2^n\mathbb{Z})^*$ is generated by 5 and -1, i.e. any odd number is equal to $\pm 5^s$ (for some $s \ge 0$) modulo 2^r .

If you think you can make money on this problem, you are right, but you will have to wait until 2017 when the US Patent 5923888 expires.

¹This homework is due before class on Friday Dec 11. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade *two* of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.