ALGEBRA 611, FALL 2009. HOMEWORK $9{ }^{(1)}$

In this worksheet k denotes an arbitrary field and R denotes a ring (as usual, commutative and with 1).

1. Describe all prime ideals of (a) $\mathbb{Z} / 24 \mathbb{Z}$; (b) $\mathbb{R}[x]$.
2. (a) Show that $x^{7}+48 x-24$ is irreducible in $\mathbb{Q}[x]$. (b) Show that $x^{3}+y^{3}+z^{3}$ is irreducible in $\mathbb{C}[x, y, z]$. (c) Show that $x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{Q}[x]$ but reducible in $K[x]$, where $K=\mathbb{Q}\left(\frac{1+\sqrt{5}}{2}\right)$.
3. If R is a domain then 0 is the minimal prime ideal. If R is not necessarily a domain, use Zorn's lemma to show that any prime ideal of R is contained in a minimal prime ideal.
4. A ring R is called Artinian if it satisfies (dcc) for ideals, i.e. any descending chain of ideals stabilizes. (a) Show that R is Artinian if and only if any set of ideals contains a minimal element. (b) Show that any finite ring is Artinian. (c) Show that an Artinian domain is a field.
5. (a) Show that a subgroup of \mathbb{Q} / \mathbb{Z} generated by $\sqrt{5}$ is dense (with respect to the usual topology on \mathbb{Q} / \mathbb{Z}). (b) Prove that a subring of $k[x, y]$ generated by all monomials $x^{n} y^{m}$ such that $n / m<\sqrt{5}$ is not Noetherian.
6. Let S be a subset of lattice points (i.e. points with integral coordinates) in the first quadrant. Suppose that S satisfies the following property: if $(n, m) \in S$ then $(n+1, m) \in S$ and $(n, m+1) \in S$. Prove that S is a union of finitely many shifted quadrants, i.e. subsets of the form $(n+a, m+b)$, where (n, m) is fixed and a, b are arbitrary nonnegative integers.
7. Prove that the ring $k[[x, y]]$ of power series in two variables is Noetherian (Hint: imitate the proof of Hilbert's basis theorem).
8. Prove that if R is a UFD then the ring $R[[x]]$ is a UFD.
9. This problem is a bit off-topic, but fun: (a) Start with any $x \equiv 1 \bmod 4$ but $x \not \equiv 1 \bmod 8$. Show that $x^{2^{r}} \equiv 1 \bmod 2^{r+2}$ but $x^{2^{r}} \not \equiv 1 \bmod 2^{r+3}$. (b) Show that the multiplicative group $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{*}$ is generated by 5 and -1 , i.e. any odd number is equal to $\pm 5^{s}$ (for some $s \geq 0$) modulo 2^{r}.

If you think you can make money on this problem, you are right, but you will have to wait until 2017 when the US Patent 5923888 expires.

[^0]
[^0]: ${ }^{1}$ This homework is due before class on Friday Dec 11. The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

