ALGEBRA 611, FALL 2009. HOMEWORK 1

This homework is due before the class on Monday September 21. These problems will be discussed during the review section on Monday at 4 pm .

The grader will grade 5 random problems from this assignment. A problem with multiple parts (a), (b), etc. counts as one problem. Please make sure that all solutions are complete and accurately written.

There is a "bail-out" provision: you can ask the grader not to grade two of the problems. Please indicate clearly in the beginning of your homework which problems you don't wish to be graded.

Do not assume that vector spaces are finite-dimensional unless otherwise stated. For infinite-dimensional problems, the linear Hahn-Banach theorem (see below) is very useful.

1. Prove that any matrix of rank one is a product of a row vector and a column vector.
2. Let A and B be $k \times n$ matrices. Show that $\mathrm{rk} A=\mathrm{rk} B$ if and only if $A=C B D$ for some invertible matrices C, D.
3. Let A be an $n \times k$ matrix and let B be a $k \times m$ matrix. Show that

$$
\mathrm{rk}(A B) \leq \min (\mathrm{rk} A, \mathrm{rk} B) .
$$

Is it true that two sides are always equal?
4. Prove that if Γ and Γ^{\prime} are two bases of \mathbb{F}^{n} then for any $e \in \Gamma \backslash \Gamma^{\prime}$ there exists $f \in \Gamma^{\prime} \backslash \Gamma$ such that $\Gamma \backslash\{e\} \cup\{f\}$ is a basis of \mathbb{F}^{n}.
5. Consider the matrix of real numbers

$$
\left[\begin{array}{ccccc}
1 & -4 & 3 & 1 & 0 \\
-2 & 1 & 1 & 2 & -1 \\
2 & 3 & -1 & 1 & 2 \\
1 & 0 & 3 & 4 & 1
\end{array}\right]
$$

Use row reduction to (a) Find a basis of the row space. (b) Find a basis of the column space. (c) Find a basis of the null space. (d) Extend your solution for (a) to a basis of \mathbb{R}^{5}. (e) Shrink the set of column vectors to a basis of their linear span.
6. Let $L: \mathbb{F}^{n} \rightarrow \mathbb{F}^{k}$ be a linear map. Prove that one can choose bases of \mathbb{F}^{n} and \mathbb{F}^{k} in such a way that

$$
[L]=\left[\begin{array}{cc}
I_{p} & 0_{p, n-p} \\
0_{k-p, p} & 0_{k-p, n-p}
\end{array}\right]
$$

where I_{p} is a $p \times p$ identity matrix and $0_{m, l}$ is an $m \times l$ matrix of zeros.
7. Let A be an $n \times n$ matrix such that $A^{2}=A$. Prove that $\operatorname{Ker} A \oplus \operatorname{Im} A=\mathbb{F}^{n}$.
8. (Linear Hahn-Banach Theorem). Let V be a vector space, let $U \subset V$ be a vector subspace, and let $v \in V \backslash U$ be a vector. Prove that there exists a linear function $f \in V^{*}$ such that $\left.f\right|_{U}=0$ and $f(v)=1$.
9. For any vector subspace $U \subset V$, let

$$
\operatorname{Ann}(U)=\left\{f \in V^{*}|f|_{U}=0\right\}
$$

be its annihilator. Prove that (a) if V is finite-dimensional then $\operatorname{Ann}(\operatorname{Ann}(U))$ is canonically isomorphic to U; (b) $(V / U)^{*}$ is canonically isomorphic to $\operatorname{Ann}(U)$. (To show that two vector spaces are canonically isomorphic, you have to construct an isomorphism between them that does not depend on choices of bases.)
10. Prove that if V is finite-dimensional then $\operatorname{dim} \operatorname{Ann} U+\operatorname{dim} U=\operatorname{dim} V$.
11. Let $L: U \rightarrow V$ be a linear map. Prove that $\operatorname{Ann}(\operatorname{Ker} L)=\operatorname{Im}\left(L^{*}\right)$.
12. Let $U_{1}, U_{2}, U_{3} \subset V$ be vector subspaces. (a) Give necessary and sufficient conditions when $U_{1} \cup U_{2}$ is a vector subspace. (b) Prove or give a counterexample $U_{1} \cap\left(U_{2}+U_{3}\right)=U_{1} \cap U_{2}+U_{1} \cap U_{3}$.
13. Let q_{i} for $i \geq 1$ be a linear functional on $\mathbb{F}[x]$ defined as follows: $q_{i}(p)=p(i)$ for any polynomial $p \in \mathbb{F}[x]$. (a) Prove that q_{i} 's are linearly independent. (b) Prove that q_{i} 's do not span the dual vector space $\mathbb{F}[x]^{*}$.
14. Let A be a 3×3 matrix with integral entries. Prove that if all 2×2 minors of A are divisible by 9 then $\operatorname{det} A$ is divisible by 27 .

