

Name and section: \qquad
ID number: \qquad

E-mail:

\qquad

1. (20 points) Let $f(x)=e^{x}+x+1$.
(a) Find the second-order Taylor polynomial $P_{2}(x)$ for $f(x)$ about $x_{0}=0$.
(b) Assume that $P_{2}(x)$ is used in order to approximate $f(x)$ on $[0,1]$. Then, upon using the remainder term R_{2}, find an upper bound for

$$
\max _{x \in[0,1]}\left|f(x)-P_{2}(x)\right| .
$$

Solution:

(a) From the function given, the $P_{2}(x)$ reads

$$
P_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} \Rightarrow P_{2}(x)=2+2 x+\frac{1}{2} x^{2} \text {. }
$$

(b) Next, using the remainder term $R_{2}(x)$ we obtain

$$
R_{2}(x)=\frac{f^{(3)}(\xi)}{3!}\left(x-x_{0}\right)^{3} \Rightarrow R_{2}(x)=\frac{e^{\xi}}{6} x^{3} \text {. }
$$

Note that we are interested in finding both ξ and x in $[0,1]$ such that $\left|R_{2}\right|$ is maximized. Thus, we have

$$
\left|R_{2}(x)\right|=\left|\frac{e^{\xi}}{6} x^{3}\right| \leq\left|\frac{e^{1}}{6} 1^{3}\right| \Rightarrow\left|R_{2}(x)\right| \lesssim 0.453 .
$$

2. (20 points) Let $f(x)=x^{2}-3$ with $a=1$ and $b=2$. Furthermore, assume that we want to use the bisection method to find the root of $\sqrt{3} \approx 1.732050807568877$. Note also, that the initial interval is $\left[a_{0}, b_{0}\right]=[1,2]$.
(a) Is the method guaranteed to converge to the root? Explain why.
(b) Perform 2 bisections by showing your steps. What is the value of a_{2} if the root is in the interval $\left[a_{2}, b_{2}\right]$?

Solution:

(a) To determine whether bisection converges to the root, we have to find out whether the criteria of the Intermediate Value Theorem are fulfiled, that is, if the function f changes sign. To this end, we have $f(1) f(2)=-2<0$, so indeed the bisection method will converge. Note also, that the root given lies in $[1,2]$.
(b) In the first step, we compute the midpoint denoted by p of $\left[a_{0}, b_{0}\right]=[1,2]$, which has the value of $p=\left(a_{0}+b_{0}\right) / 2=3 / 2$. Subsequently, we check $f(1) f(3 / 2)=3 / 2>0$ and $f(3 / 2) f(2)=-3 / 4<0$. Therefore, $\left[a_{1}, b_{1}\right]=$ $[3 / 2,2]$. Next, we find the new p which is given by $p=\left(a_{1}+b_{1}\right) / 2=7 / 4$. We must check now whether the function $f(x)$ changes sign in the intervals $[3 / 2,7 / 4]$ or $[7 / 4,2]$. To this end we have $f(3 / 2) f(7 / 4)=-3 / 64<0$ and $f(7 / 4) f(2)=1 / 16>0$. Thus, we obtain $\left[a_{2}, b_{2}\right]=[3 / 2,7 / 4]$, or $a_{2}=3 / 2$ in question. Note also that $x^{*} \in\left[a_{2}, b_{2}\right]$ still.
3. (30 points) Suppose that we want to use fixed point iterations of the form of $x_{k+1}=g\left(x_{k}\right)$ with $k=0,1, \ldots$, in order to find the value of x such that $x^{2}-2 x=3$. Note that $g(x)$ stands for the iteration function.
(a) Find the two roots, namely, x_{1}^{*} and x_{2}^{*}, of the underlying quadratic equation analytically.
(b) Determine three iteration functions $g(x)$. Then, which choice of yours can be used to find the positive root of the previous step? Explain why.
(c) What is the order of convergence in this case? Justify your answer.

Solution:

(a) At first, the equation given is a quadratic one and can be written as $x^{2}-$ $2 x-3=0$ with roots $x_{1}^{*}=-1$ and $x_{2}^{*}=3$ obtained by known formulas.
(b) The three iteration functions can be obtain as follows

$$
\begin{aligned}
& x^{2}-2 x=3 \Rightarrow x=\frac{1}{2}\left(x^{2}-3\right) \quad \text { with } \quad g(x)=\frac{1}{2}\left(x^{2}-3\right) \\
& x^{2}-2 x=3 \Rightarrow x= \pm \sqrt{2 x+3} \quad \text { with } \quad g(x)= \pm \sqrt{2 x+3}
\end{aligned}
$$

Next, and based on the functions $g(x)$ obtained above, we must examine whether $\left|g^{\prime}\left(x_{2}^{*}\right)\right|<1$ holds. In particular, we have

$$
\begin{aligned}
\left|g^{\prime}(x)\right| & =|x| \Rightarrow\left|g^{\prime}\left(x_{2}^{*}\right)\right|=3>1 \\
\left|g^{\prime}(x)\right| & =\left|\frac{1}{\sqrt{2 x+3}}\right| \Rightarrow\left|g^{\prime}\left(x_{2}^{*}\right)\right|=1 / 3<1
\end{aligned}
$$

respectively. This way, we conclude that the positive root $x_{2}^{*}=3$ can be found by using $g(x)=\sqrt{2 x+3}$ (with the plus sign!).
(c) The fixed point iteration will converge linearly since $\left|g^{\prime}\left(x_{2}^{*}\right)\right| \neq 0$. This can be immediately seen by the Taylor expansion of the iteration function $g(x)$ about x_{2}^{*}

$$
\begin{aligned}
g(x) & =g\left(x_{2}^{*}\right)+g^{\prime}\left(x_{2}^{*}\right)\left(x-x_{2}^{*}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(x-x_{2}^{*}\right)^{2} \xlongequal{\left(x=x_{k}\right)} \\
x_{k+1} & =x_{2}^{*}+g^{\prime}\left(x_{2}^{*}\right)\left(x_{k}-x_{2}^{*}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(x_{k}-x_{2}^{*}\right)^{2} \Rightarrow \\
\frac{x_{k+1}-x_{2}^{*}}{x_{k}-x_{2}^{*}} & =g^{\prime}\left(x_{2}^{*}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(x_{k}-x_{2}^{*}\right) \Rightarrow \\
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x_{2}^{*}\right|}{\left|x_{k}-x_{2}^{*}\right|} & =\left|g^{\prime}\left(x_{2}^{*}\right)\right|
\end{aligned}
$$

Note that the convergence factor ρ and rate of convergence α are $\rho=$ $\left|g^{\prime}\left(x_{2}^{*}\right)\right|=1 / 3<1$ and $\alpha=1$, respectively.
4. (30 points) Assume that we wish to find x such that $e^{x}+x=3$.
(a) Reformulate the problem as $f(x)=0$ by identifying the function $f(x)$.
(b) What is the iteration function $g(x)$ for Newton's method applied to $f(x)$?
(c) Perform just one step of Newton's method with initial guess $x_{0}=0$.
(d) Of course, if we keep iterating we will converge to the actual root x^{*}. What would be the order of convergence of the iterates? Justify your answer.

Solution:

(a) Obviously, $f(x)=0$ with $f(x)=e^{x}+x-3$.
(b) From Newton's method, we know that

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)} \Rightarrow g(x)=x-\frac{e^{x}+x-3}{e^{x}+1} .
$$

(c) As per Newton's method

$$
x_{k+1}=x_{k}-\frac{e^{x_{k}}+x_{k}-3}{e^{x_{k}}+1}
$$

thus, at $k=0$ we have that

$$
x_{1}=x_{0}-\frac{e^{x_{0}}+x_{0}-3}{e^{x_{0}}+1} \Rightarrow x_{1}=1 .
$$

(d) To obtain the order of convergence of Newton's method, we know that

$$
g^{\prime}(x)=1-\frac{f^{\prime 2}(x)-f(x) f^{\prime \prime}(x)}{f^{\prime 2}(x)} \Rightarrow g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime 2}(x)} \stackrel{x=x^{*}}{\Longrightarrow} g^{\prime}\left(x^{*}\right)=0
$$

since $f\left(x^{*}\right)=0$ with x^{*} denoting the fixed point. Furthermore, recall Taylor's expansion of the iteration function $g(x)$ about x^{*}

$$
\begin{aligned}
& g(x)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)^{*}\left(x-x^{*}\right)+\frac{g^{\prime \prime}\left(x^{*}\right)}{2}\left(x-x^{*}\right)^{2}+\frac{g^{\prime \prime \prime}(\xi)}{6}\left(x-x^{*}\right)^{3} \stackrel{\left(x=x_{k}\right)}{\longrightarrow} \\
& x_{k+1}=x^{*}+\frac{g^{\prime \prime}\left(x^{*}\right)}{2}\left(x_{k}-x^{*}\right)^{2}+\frac{g^{\prime \prime \prime}(\xi)}{6}\left(x_{k}-x^{*}\right)^{3} \Rightarrow \\
& \frac{x_{k+1}-x^{*}}{\left(x_{k}-x^{*}\right)^{2}}=\frac{1}{2} g^{\prime \prime}\left(x^{*}\right)+\frac{g^{\prime \prime \prime}(\xi)}{6}\left(x_{k}-x^{*}\right) \Rightarrow \\
& \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=\frac{1}{2}\left|g^{\prime \prime}\left(x^{*}\right)\right|,
\end{aligned}
$$

where the convergence factor ρ and rate of convergence α are given by $\rho=$ $\left|g^{\prime \prime}\left(x^{*}\right)\right| / 2$ and $\alpha=2$, respectively. Finally, the fact that $\alpha=2$ signals that the convergence to x^{*} in Newton's method is quadratic provided that $g^{\prime \prime}\left(x^{*}\right) \neq 0$.

Duration: 1h 15 min

Good luck!

