Name and section: \qquad

ID number:

\qquad

E-mail:

\qquad

1. (15 points) Let $f(x)=\cos x+x$.
(a) (7 points) Find the second-order Taylor polynomial $P_{2}(x)$ for $f(x)$ about $x_{0}=$ 0.
(b) (8 points) Assume that $P_{2}(x)$ is used in order to approximate $f(x)$ on $[0, \pi / 2]$. Then, upon using the remainder term R_{2}, find an upper bound for

$$
\max _{x \in[0, \pi / 2]}\left|f(x)-P_{2}(x)\right| .
$$

Solution:

(a) From the function given, the $P_{2}(x)$ reads

$$
P_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} \Rightarrow P_{2}(x)=1+x-\frac{1}{2} x^{2} .
$$

(b) Next, using the remainder term $R_{2}(x)$ we obtain

$$
R_{2}(x)=\frac{f^{(3)}(\xi)}{3!}\left(x-x_{0}\right)^{3} \Rightarrow R_{2}(x)=\frac{\sin \xi}{6} x^{3} .
$$

Note that we are interested in finding both ξ and x in $[0, \pi / 2]$ such that $\left|R_{2}\right|$ is maximized. Thus, we have

$$
\left|R_{2}(x)\right|=\left|\frac{\sin \xi}{6} x^{3}\right| \leq\left|\frac{\sin (\pi / 2)}{6}\left(\frac{\pi}{2}\right)^{3}\right|=\frac{\pi^{3}}{48} \Rightarrow\left|R_{2}(x)\right| \lesssim 0.645964
$$

2. (20 points) Let $f(x)=x^{2}-7$ with $a=2$ and $b=3$. Furthermore, assume that we want to use the bisection method to find the root of $\sqrt{7} \approx 2.6457513110645907$. Note also, that the initial interval is $\left[a_{0}, b_{0}\right]=[2,3]$.
(a) (5 Points) Is the method guaranteed to converge to the root? Explain why.
(b) (15 Points) Perform 2 bisections by showing your steps. What is the value of a_{2} if the root is in the interval $\left[a_{2}, b_{2}\right]$?

Solution:

(a) To determine whether bisection converges to the root, we have to find out whether the criteria of the Intermediate Value Theorem are fulfiled, that is, if the function f changes sign and is continuous. To this end, we have $f(2) f(3)=-6<0$, so indeed the bisection method will converge. Note also, that the root given lies in $[2,3]$.
(b) In the first step, we compute the midpoint denoted by p of $\left[a_{0}, b_{0}\right]=[2,3]$, which has the value of $p=\left(a_{0}+b_{0}\right) / 2=5 / 2$. Subsequently, we check $f(2) f(5 / 2)=9 / 4>0$ and $f(5 / 2) f(3)=-3 / 2<0$. Therefore, $\left[a_{1}, b_{1}\right]=$ $[5 / 2,3]$. Next, we find the new p which is given by $p=\left(a_{1}+b_{1}\right) / 2=11 / 4$. We must check now whether the function $f(x)$ changes sign in the intervals $[5 / 2,11 / 4]$ or $[11 / 4,3]$. To this end we have $f(5 / 2) f(11 / 4)=-27 / 64<0$ and $f(11 / 4) f(3)=9 / 8>0$. Thus, we obtain $\left[a_{2}, b_{2}\right]=[5 / 2,11 / 4]$, or $a_{2}=5 / 2$ in question. Note also that $x^{*} \in\left[a_{2}, b_{2}\right]$ still.
3. (20 points) Suppose that we want to use fixed point iterations of the form of $x_{k+1}=g\left(x_{k}\right)$ with $k=0,1, \ldots$, in order to find the value of x such that $x^{2}+4 x=5$. Note that $g(x)$ stands for the iteration function.
(a) (5 points) Find the two roots, namely, x_{1}^{*} and x_{2}^{*}, of the underlying quadratic equation analytically.
(b) (7 points) Determine three iteration functions $g(x)$. Then, which choice of yours can be used to find the negative root of the previous step? Explain why.
(c) (8 points) What is the order of convergence in this case? Justify your answer.

Solution:

(a) At first, the equation given is a quadratic one and can be written as $x^{2}+$ $4 x-5=0$ with roots $x_{1}^{*}=-5$ and $x_{2}^{*}=1$ obtained by known formulas.
(b) The three iteration functions can be obtain as follows

$$
\begin{aligned}
& x^{2}+4 x=5 \Rightarrow x=\frac{1}{4}\left(5-x^{2}\right) \quad \text { with } \quad g(x)=\frac{1}{4}\left(5-x^{2}\right), \\
& x^{2}+4 x=5 \Rightarrow x= \pm \sqrt{5-4 x} \quad \text { with } \quad g(x)= \pm \sqrt{5-4 x}
\end{aligned}
$$

Note that in the last two choices $5-4 x \geq 0 \Rightarrow x \leq 5 / 4$. Next, and based on the functions $g(x)$ obtained above, we must examine whether $\left|g^{\prime}\left(x_{1}^{*}\right)\right|<1$ holds. In particular, we have

$$
\begin{aligned}
\left|g^{\prime}(x)\right| & =\left|-\frac{x}{2}\right| \Rightarrow\left|g^{\prime}\left(x_{1}^{*}\right)\right|=\frac{5}{2}>1 \\
\left|g^{\prime}(x)\right| & =\left|-\frac{2}{\sqrt{5-4 x}}\right| \Rightarrow\left|g^{\prime}\left(x_{1}^{*}\right)\right|=2 / 5<1
\end{aligned}
$$

respectively. This way, we conclude that the negative root $x_{1}^{*}=-5$ can be found by using $g(x)=-\sqrt{5-4 x}$ (with the minus sign!).
(c) The fixed point iteration will converge linearly since $\left|g^{\prime}\left(x_{1}^{*}\right)\right| \neq 0$. This can be immediately seen by the Taylor expansion of the iteration function $g(x)$ about x_{1}^{*}

$$
\begin{aligned}
g(x) & =g\left(x_{1}^{*}\right)+g^{\prime}\left(x_{1}^{*}\right)\left(x-x_{1}^{*}\right)+\frac{1}{2}\left(x-x_{1}^{*}\right)^{2} g^{\prime \prime}(\xi) \stackrel{\left(x=x_{k}\right)}{\longrightarrow} \\
g\left(x_{k}\right) & =g\left(x_{1}^{*}\right)+g^{\prime}\left(x_{1}^{*}\right)\left(x_{k}-x_{1}^{*}\right)+\frac{1}{2}\left(x_{k}-x_{1}^{*}\right)^{2} g^{\prime \prime}(\xi) \\
x_{k+1} & =x_{1}^{*}+g^{\prime}\left(x_{1}^{*}\right)\left(x_{k}-x_{1}^{*}\right)+\frac{1}{2}\left(x_{k}-x_{1}^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
\frac{x_{k+1}-x_{1}^{*}}{x_{k}-x_{1}^{*}} & =g^{\prime}\left(x_{1}^{*}\right)+\frac{1}{2}\left(x_{k}-x_{1}^{*}\right) g^{\prime \prime}(\xi) \Rightarrow\left(\lim _{k \rightarrow \infty} x_{k}=x^{*}\right) \\
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x_{1}^{*}\right|}{\left|x_{k}-x_{1}^{*}\right|} & =\left|g^{\prime}\left(x_{1}^{*}\right)\right|
\end{aligned}
$$

Note that the convergence factor ρ and rate of convergence α are $\rho=$ $\left|g^{\prime}\left(x_{1}^{*}\right)\right|=2 / 5<1$ and $\alpha=1$, respectively.
4. (20 points) Assume that a function f is three times differentiable, that is, $f \in$ $C^{3}[a, b]$ and there is a root $x^{*} \in[a, b]$ such that $f\left(x^{*}\right)=0$ and $f^{\prime}\left(x^{*}\right) \neq 0$. Show that Newton's method converges quadratically.

Solution:

(a) One approach:

Let us first define the absolute error as $e_{k} \doteq\left|x_{k}-x^{*}\right|$. Then, consider the Taylor expansion for $g(x)$ about x^{*}

$$
\begin{equation*}
g(x)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{2} g^{\prime \prime}(\xi), \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
g^{\prime}(x) & =\frac{f^{\prime \prime}(x) f(x)}{\left[f^{\prime}(x)\right]^{2}} \\
g^{\prime \prime}(x) & =\frac{f^{\prime}(x) f^{\prime \prime}(x)+f(x) f^{\prime \prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}-\frac{2 f(x)\left[f^{\prime \prime}(x)\right]^{2}}{\left[f^{\prime}(x)\right]^{3}}
\end{aligned}
$$

Since $f\left(x^{*}\right)=0$ and $f^{\prime}\left(x^{*}\right) \neq 0$, then

$$
\begin{align*}
g^{\prime}\left(x^{*}\right) & =0 \tag{2}\\
g^{\prime \prime}\left(x^{*}\right) & =\frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} \tag{3}
\end{align*}
$$

Inserting Eqs. (2) and (3) into Eq. (1), we obtain at $x=x_{k}$

$$
\begin{aligned}
g\left(x_{k}\right) & =g\left(x^{*}\right)+\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
x_{k+1} & =x^{*}+\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
x_{k+1}-x^{*} & =\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
\underbrace{\left|x_{k+1}-x^{*}\right|}_{e_{k+1}} & =\frac{1}{2} \underbrace{\left|x_{k}-x^{*}\right|^{2}}_{e_{k}^{2}}\left|g^{\prime \prime}(\xi)\right| \Rightarrow \\
e_{k+1} & =\frac{\left|g^{\prime \prime}(\xi)\right|}{2} e_{k}^{2} .
\end{aligned}
$$

The $g^{\prime \prime}(x)$ is a continuous function since $g(x)$ is a smooth one. Hence, there exists a constant $M \in \mathbf{R}$ such that

$$
\frac{\left|g^{\prime \prime}(\xi)\right|}{2} \leq M,
$$

for all points ξ sufficiently close to x^{*}. Then, the previous inequality yields

$$
e_{k+1} \leq M e_{k}^{2},
$$

proving the quadratic convergence of Newton's method.
(b) Second approach:

Let us Taylor expand the iteration function $g(x)$ about x^{*}

$$
\begin{aligned}
g(x) & =g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{2} g^{\prime \prime}(\xi) \stackrel{\left(x=x_{k}\right)}{\longrightarrow} \\
g\left(x_{k}\right) & =g\left(x^{*}\right)+\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
x_{k+1} & =x^{*}+\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
x_{k+1}-x^{*} & =\frac{1}{2}\left(x_{k}-x^{*}\right)^{2} g^{\prime \prime}(\xi) \Rightarrow \\
\frac{x_{k+1}-x^{*}}{\left(x_{k}-x^{*}\right)^{2}} & =\frac{1}{2} g^{\prime \prime}(\xi) \Rightarrow \\
\frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}} & =\frac{1}{2}\left|g^{\prime \prime}(\xi)\right|,
\end{aligned}
$$

which implies that $\alpha=2$ with convergence factor $\rho=\frac{1}{2}\left|g^{\prime \prime}(\xi)\right|$. Note that the latter is based on the definition on convergence of series that we discussed in class.
5. (25 points) Consider the following system of two nonlinear equations

$$
y-x^{3}=0
$$

$$
x^{2}+y^{2}=1
$$

(a) (5 points) Write down the associated Jacobian matrix for this system.
(b) (20 points) Perform one step of Newton's method with initial guesses $x_{0}=1$ and $y_{0}=2$.
The inverse of a 2×2 matrix A of the form of

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Solution:

(a) At first, we have $f(x, y)=y-x^{3}$ and $g(x, y)=x^{2}+y^{2}-1$. The Jacobian matrix J is given by

$$
J=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right] \Rightarrow J=\left[\begin{array}{cc}
-3 x^{2} & 1 \\
2 x & 2 y
\end{array}\right] .
$$

(b) Next, we obtain the inverse of the Jacobian matrix using the formula provided

$$
J^{-1}=-\frac{1}{6 x^{2} y+2 x}\left[\begin{array}{cc}
2 y & -1 \\
-2 x & -3 x^{2}
\end{array}\right]
$$

This way, Newton's method follows

$$
\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]+\frac{1}{6 x^{2} y+2 x}\left[\begin{array}{cc}
2 y_{k} & -1 \\
-2 x_{k} & -3 x_{k}^{2}
\end{array}\right]\left[\begin{array}{c}
y_{k}-x_{k}^{3} \\
x_{k}^{2}+y_{k}^{2}-1
\end{array}\right]
$$

and applying it at $k=0$, we have

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\frac{1}{14}\left[\begin{array}{cc}
4 & -1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right], \Rightarrow\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\frac{1}{14}\left[\begin{array}{c}
0 \\
-14
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Duration: 1h 30 min

Good luck!

