Name:

\qquad

Instructions

- Turn off all cell phones and watch alarms!
- There are 6 questions. Do all work in this exam booklet. You may continue work to the backs of pages, but if you do so indicate where.
- This is a "closed-book" Exam: do not use any book, calculator, or paper except this exam booklet.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!

QUESTION	POSSIBLE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
TOTAL	120	

1. Consider finding a root of $f(x)=x^{1 / 3}$ using Newton's method with initial guess $x_{0}=1$.
(a) Write down the Newton iteration and make a table showing the first three steps x_{0}, x_{1}, x_{2}.
(b) Does the iteration converge linearly, quadratically, or some other order? If it is linear, what is the rate? Justify your answer by citing a theorem or giving direct proof.
2. Consider finding a root of $f(x)=\log (x)+2-x$ using the bisection method.
(a) There is a root $x>2$. Bracket the root using the intermediate value theorem.
(b) Using your interval, bound the error after n steps. How many iterations would be required to find a point within 2^{-10} of the actual root?
3. Consider the matrix

$$
A=\left[\begin{array}{cc}
10^{-10} & 2 \\
2 & 2
\end{array}\right]
$$

(a) Find the LU decomposition for A.
(b) Find the $\mathrm{PA}=\mathrm{LU}$ decomposition for A.
(c) What advantages does the $\mathrm{PA}=\mathrm{LU}$ decomposition have for this matrix?
4. (a) Define the forward and backward error for the solution of $A \mathbf{x}=\mathbf{b}$ with approximate solution \mathbf{x}_{a}.
(b) Compute the true solution \mathbf{x} for

$$
A=\left[\begin{array}{cc}
1.01 & 1 \\
1 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(c) For the system in part b, compute the relative forward error, relative backward error, and error magnification for the approximate solution $\mathbf{x}_{a}=[1,0]^{T}$.
5. Consider solving $A \mathbf{x}=\mathbf{b}$ using the Gauss-Seidel Method where

$$
A=\left[\begin{array}{ll}
4 & 3 \\
5 & 4
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(a) Find the first three terms of the iteration, x_{0}, x_{1}, x_{2}.
(b) Will the iteration converge? (Hint: find the infinity norm of the iteration matrix).
6. (a) Find all cubic polynomials that pass through the points $(-1,2),(1,4),(2,8)$.
(b) Find a cubic polynomial that passes through $(-1,2),(1,4),(2,8),(0,10)$.

