Name:

Stat 516
 Midterm Examination
 March 12, 2015
 (10:00 AM - 11:15 AM)

Instructions:

- The total score is 100 points.
- There are six questions. Each one is worth 20 points. TA will grade the best five questions that you solved.
- Show ALL your work!!
- Some questions have more than one parts. Check carefully to ensure that you don't miss any parts.
- Don't scratch on the line marked Score on the bottom of each page.
- You are allowed to use one 8.5×11 (letter size) double-sided formula sheet and a calculator in this exam.

1. The tensile strength for a type of wire is normally distributed with mean μ and variance σ^{2}. Six pieces of wire $(n=6)$ were randomly selected from a large roll; and Y_{i}, the tensile strength for portion i is measured for $i=1,2, \ldots, 6$.
(2points) (a) What is the sampling distribution of $\bar{Y}=\frac{1}{6}\left(Y_{1}+\cdots+Y_{6}\right)$? (No justification required) [Sol]
(8points) (b) Suppose the population mean μ is unknown, but the population variance σ^{2} is known as 6. Find the probability that \bar{Y} will be within 2 of the true population mean μ. [Sol]
(10points) (c) Suppose the population mean μ and variance σ^{2} are unknown. Then we can estimate μ and σ^{2} by \bar{Y} and S^{2} (sample variance). Find the probability that \bar{Y} will be within $2 S / \sqrt{n}$ of the true population mean μ.
[Sol]
\qquad
2. Candidate A in a city election believes that 30% of the city's voters favor him. Suppose the $n=20$ voters from the city show up to vote. Note that we think of $n=20$ voters as a random sample from this city.
(2points) (a) Suppose Y is the number of voters who vote him. What is the probability distribution for $Y ?($ Hint. Y is a discrete random variable with a well-known probability distribution) [Sol]
(8points) (b) What is the exact probability that candidate A will receive 25% of their votes? (Hint. The following information will be helpful for the probability calculation: $P(Y \leq$ $6)=0.608, P(Y \leq 5)=0.416, P(Y \leq 4)=0.238, P(Y \leq 3)=0.107)$.
(10points) (c) What is the approximate probability that candidate A will receive 25% of their votes? (Hint. Use the central limit theorem and the 0.5 continuity correction).
[Sol]
\qquad
3. Suppose that Y_{1}, Y_{2} and Y_{3} denote a random sample from a normal distribution with mean $E\left(Y_{i}\right)=\mu$ and $V\left(Y_{i}\right)=\sigma^{2}$ for $i=1,2,3$. Note that σ^{2} is known. Consider the following two estimators of μ :

$$
\hat{\mu}_{1}=\frac{0.5 Y_{1}+2 Y_{2}+0.5 Y_{3}}{3} \text { and } \hat{\mu}_{2}=\bar{Y}=\frac{Y_{1}+Y_{2}+Y_{3}}{3}
$$

(10points) (a) Show that $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$ are unbiased estimators for μ. [Sol]
(10points) (b) Calculate the variances of $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$, and find an estimator that has the smallest MSE(Mean Square Error).
[Sol]
\qquad
4. Suppose that Y_{1}, \ldots, Y_{n} represent a random sample from an exponential distribution with parameter θ.
(4points) (a) What is the moment generating function of Y_{i} where $i=1, \ldots, n$? [Sol]
(8points) (b) What is the sampling distribution of $S=\sum_{i=1}^{n} Y_{i}$? (Hint : You can use the method of moment generating functions) (Justification required).
[Sol]
(8points) (c) Find an unbiased estimator for θ and calculate its standard error. [Sol]
\qquad
5. In polycrystalline aluminum, the number of grain nucleation sites per unit volume is modeled as having a Poisson distribution with mean λ. Fifty unit-volume test specimens subjected to annealing under regime A produced an average of 50 sites per unit volume. Fifty independently selected unit-volume test specimens subjected to annealing regime B produced an average of 65 sites per unit volume.
(10points) (a) Estimate the mean number λ_{A} of nucleation for regime A and place a 2-standard error bound on the error of estimation.
[Sol]
(10points) (b) Estimate the difference in the mean numbers of nucleation sites $\lambda_{A}-\lambda_{B}$ for regime A and B. Place a 2-standard error bound on the error of estimation.
[Sol]
\qquad
6. The administrator for a hospital wished to estimate the average number of days (μ) required for inpatient treatment of patients between the ages of 25 and 34. A random sample of $100(=n)$ hospital patients between these ages produced a sample mean and sample variance equal to $5.4(=\bar{y})$ and $3.1\left(=s^{2}\right)$, respectively.
(5points) (a) Find an unbiased estimator for the mean length of stay for the population of patients from which the sample was drawn, μ, and calculate its standard error.
[Sol]
(15points) (b) Construct a 95% two-sided confidence interval for the mean length of stay for the population of patients (Hint: Use a large-sample confidence interval formula.)
[Sol]
\qquad

