Name: Student ID: Show all work. Explain your answers. Partial credit will be given. There are 5 questions, and a total of 100 points. Points are shown for each question. - 1. Let (X_1, X_2, \dots, X_k) be the vector of sample observations representing a multinomial random variable with parameters n, p_1, p_2, \dots , and p_k . - (a) (7 points) Write out the joint likelihood of X_1, X_2, \dots, X_k - (b) (7 points) Show that the maximum likelihood estimate for p_1 is X_1/n - (c) (7 points) Show that X_1/n is an unbiased estimator for p_1 - 2. The owner of Fit Forever Health Club is considering adding an indoor swimming pool to his facility. The manager decided to take a survey to determine whether member opinion about the addition of a pool was independent of the age of the member. Two hundred members were selected at random and asked to state their opinion. The following data was recorded: Table 1: Opinion Concerning Pool | Age | Favor | Undecided | Oppose | |------------------|-------|-----------|--------| | ≤ 30 | 40 | 20 | 18 | | $> 30 \& \le 50$ | 30 | 25 | 20 | | > 50 | 10 | 16 | 21 | - (a) (7 points) Under the assumption that a member's opinion concerning the addition of an indoor pool is independent of the member's age, find the probability that a randomly sampled member is under age 30 and favors the addition. - (b) (9 points) Perform an appropriate hypothesis test for the independence between a member's opinion and the member's age. - 3. Let (x_1, Y_1) , (x_2, Y_2) , \cdots , and (x_n, Y_n) be a set of points satisfying the assumptions of the simple linear model. - (a) (7 points) Show that the estimated regression line $y = \hat{\beta}_0 + \hat{\beta}_1 x$ at $x = \bar{x}$ is \bar{Y} . Hint: plug in the formula for $\hat{\beta}_0$ and leave $\hat{\beta}_1$ as it is. - (b) (7 points) Find the 95% confidence interval for the regression line at $x = \bar{x}$. Table 2: The regression data | | | | | | | | | 110 | | | |---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | у | 0.3 | 0.2 | 5.0 | 3.0 | 2.0 | 0.5 | 4.0 | 6.0 | 1.5 | 4.0 | Table 3: The regression equation is y = -1.74 + 0.0731x | | Estimate | Standard deviation | T-ratio | p-value | |-----------|----------|--------------------|---------|---------| | β_0 | -1.7359 | 0.1882 | -9.22 | 0.000 | | β_1 | 0.073099 | 0.002867 | 25.50 | 0.000 | - 4. A scientist is studying the relationship between x = inches of annual rainfall and y=inches of shoreline erosion. One study reported data as shown in Table 2. Table 3 contains part of the regression analysis results by MINITAB, a statistical software. - (a) (7 points) Write out the formula that is used to compute the estimate of β_1 . - (b) (7 points) Write out the formula that is used to compute the standard deviation of β_1 . - (c) (7 points) The T-ratio for β_1 is the T test statistic for the hypothesis: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$. Write out the formula that is used to compute the T-ratio. - (d) (7 points) For the same hypothesis as in (c), the p-value is used to determine whether to reject H_0 . Explain how the p-value for β_1 is obtained and draw your conclusion for the hypothesis based on the p-value. - (e) (7 points) Let σ^2 be the variance of the random error in the simple linear regression model. The estimate of σ based on the above data is S=0.2416. Using the fact that $(n-2)S^2/\sigma^2 \sim \chi^2_{n-2}$, perform an appropriate test for the hypothesis $H_0: \sigma^2=1$ vs $H_1: \sigma^2 \neq 1$. State your conclusion. - 5. Suppose that X and Y have a bivariate normal pdf with $\mu_X = 3$, $\mu_Y = 6$, $\sigma_X^2 = 4$, $\sigma_Y^2 = 10$, and $\rho = 0.5$. - (a) (7 points) Find P(5 < Y < 6.5). - (b) (7 points) Find P(5 < Y < 6.5 | X = 2).