Name: Student ID:

1. (13 points) Suppose $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\nu, \omega^2)$, and that X and Y are independent. Using moment generating functions to find the distribution of U = 5X + 2Y.

Hint: You may assume that if $X \sim N(\mu, \sigma^2)$, then the moment generating function of X is given by

$$M_X(t) = \exp\left[\mu t + \sigma^2 t^2 / 2\right].$$

2. (13 points) Suppose that $X_1, \dots, X_n \stackrel{iid}{\sim} f_X(x; \theta)$ where

$$f_X(x;\theta) = \frac{1}{2\theta} \exp(-|x|/\theta)$$
 $(\theta > 0)$

Find the maximum likelihood estimator of θ .

- 3. (24 points) Suppose that $X_1, \dots, X_n \stackrel{iid}{\sim} Uniform(\theta, \theta + 1)$, where θ is a fixed but unknown constant that we wish to estimate.
 - (a) (6 points) Show that the moment estimator of θ is $\bar{X} 1/2$.
 - (b) (6 points) Show that the moment estimator is unbiased.
 - (c) (6 points) Write down the sampling distribution of the estimator when n is large.
 - (d) (6 points) Construct a 95% confidence interval for θ based on the result in (c).