Midterm SOLUTIONS

March 12, 2009
Instructions: Show all your work for full credit, and box your answers when appropriate. Unless otherwise noted, all rates are per annum with continuous compounding.

1. (a) Let $Y_{t}=B_{t}^{3}+t^{2}$ where B_{t} is Brownian motion. Compute $d X$.

Solution:

Use Ito's Lemma with $X_{t}=B_{t}, G(x, t)=x^{3}+t^{2}$. So $d X=0 * d t+1 * d B, Y_{t}=$ $G\left(X_{t}, t\right)$, and

$$
\begin{aligned}
d Y & =\left(\frac{\partial G}{\partial t}+\frac{\partial G}{\partial x} * 0+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} * 1\right)+\frac{\partial G}{\partial x} * 1 d B \\
& =\left(2 t+\frac{1}{2} 6 B\right) d t+3 B^{2} d B
\end{aligned}
$$

(b) Suppose Y follows geometric brownian motion, show that Y^{3} also follows geometric Brownian motion.

Solution: Use Ito's Lemma with $G(y, t)=y^{3}$. So $Y_{t}^{3}=G\left(Y_{t}, t\right)$

$$
\begin{aligned}
d\left(Y^{3}\right) & =\left(\frac{\partial G}{\partial t}+\frac{\partial G}{\partial y} *(\mu Y)+\frac{1}{2} \frac{\partial^{2} G}{\partial y^{2}} *(\sigma Y)\right)+\frac{\partial G}{\partial y}(\sigma Y) d B \\
& =\left(0+3 Y^{2} *(\mu Y)+\frac{1}{2} 6 Y *(\sigma Y)\right) d t+3 Y^{2} *(\sigma Y) d B \\
& =Y^{3}(3 \mu+3 \sigma) d t+Y^{3}(3 \sigma) d B
\end{aligned}
$$

This is GBM with drift $(3 \mu+3 \sigma)$ and volatility 3σ.
2. IBM is currently trading at $\$ 80$. Traders believe it follows the log-normal model: its volatility is 25%, and it is expected to grow at a rate of 6%. (That is, the expected return of the stock is 6% per annum, with continuous compounding.) The risk-free rate is 5%. IBM will pay a dividend of $\$ 10$ in 2 months. Consider both a European and American call option on IBM with strike $\$ 70$ and expiring in 3 months. Compute the Black-Scholes price of the European call option, and Black's approximation for the American call option price.

Solution:

For the European call, first we compute the effective stock price

$$
S_{0}^{e} f f=80-10 e^{-0.05 * 2 / 12}=70.08
$$

We plug this into d_{1} and d_{2} :
$d_{1}=\frac{\ln (70.08 / 80)+\left(0.05+.25^{2} / 2\right) * 3 / 12}{.25 * \sqrt{3 / 12}}=0.1716, \quad d_{2}=d_{1}-.25 * \sqrt{3 / 12}=.0466$.
and then into the Black-Scholes formula

$$
c=70.08 F_{Z}(0.1716)-70 e^{-0.05 * 3 / 12} F_{Z}(.0466)=3.96
$$

For the American call, Black's approximation tells us to compute price of a European call which expires just before the dividend is paid. In this case our expiration $T=2 / 12$ and our "effective stock price " is 80 since no dividend is missed.

$$
\begin{gathered}
d_{1}=\frac{\ln (80 / 80)+\left(0.05+.25^{2} / 2\right) * 2 / 12}{.25 * \sqrt{2 / 12}}=1.441, \quad d_{2}=d_{1}-.25 * \sqrt{2 / 12}=1.339 \\
c=80\left(F_{Z}(1.441)-70 e^{-0.05 * 2 / 12} F_{Z}(1.339)=10.85\right.
\end{gathered}
$$

The approximation for the American price is the greater of these two European prices, which is 10.85 .
3. In these uncertain times, some investors like to purchase the Inverse Derivative, which pays you the multiplicative inverse of (that is, "one over") a stock price at some future specified maturity date. Google is currently trading at $\$ 300$. Traders believe it follows the log-normal model: its volatility is 20%, and it is expected to grow at a rate of 10%. The risk-free rate is 5%. Compute the price of the Inverse Derivative on Google, maturing in 6 months.

Solution: Let Z be an $N(0,1)$ random variable. The price is the expected discounted payoff in the risk neutral world (note that μ is irrelevant)

$$
\begin{aligned}
e^{-r T} E\left[S_{T}^{-1}\right] & =e^{-r T} E\left[S_{0}^{-1} e^{-\left(r-\sigma^{2} / 2\right) T-\sigma \sqrt{T} Z}\right] \\
& =e^{-r T} S_{0}^{-1} e^{-\left(r-\sigma^{2} / 2\right) T} E\left[e^{-\sigma \sqrt{T} Z}\right] \\
& =e^{-r T} S_{0}^{-1} e^{-\left(r-\sigma^{2} / 2\right) T} e^{\sigma^{2} T / 2} \\
& =0.0032348184
\end{aligned}
$$

4. Assume the price of a stock S_{t} is log-normal:

$$
d S=\mu S d t+\sigma S d B
$$

where B_{t} is Brownian motion, the constant μ is the expected growth, and the constant σ is the volatility. The risk-free rate is r. Today is time 0 . Compute today's price of the so-called "Digital Option," which pays you $\$ 1$ at time T if the stock's actual (realized) growth rate beats the risk-free rate over the time period
$[0, T]$ and $\$ 0$ if it does not. In other words, the derivative holder gets $\$ 1$ if a given investment today in the stock beats the same investment in the risk-free bond over the time period $[0, T]$, and $\$ 0$ if it does not.

Solution: Here we need to use the probability trick that is X is a random variable which is 1 if event A occurs and 0 otherwise, then $E[X]=P(A)$, the probability of event A occurring. Let X be the pay-off of this digital option. The price is the expected discounted payoff in the risk neutral world (note that μ is irrelevant)

$$
\begin{aligned}
e^{-r T} E[X] & =e^{-r T} P\left(S_{T}>S_{0} e^{r T}\right) \\
& =e^{-r T} P\left(S_{0} e^{\left(r-\sigma^{2} / 2\right) T+\sigma \sqrt{T} Z}>S_{0} e^{r T}\right) \\
& =e^{-r T} P\left(e^{\sigma \sqrt{T} Z}>e^{\sigma^{2} T / 2}\right) \\
& =e^{-r T} P\left(Z>\frac{\sigma^{2} T / 2}{\sigma \sqrt{T}}\right) \\
& =e^{-r T}\left(1-P\left(Z<\frac{\sigma^{2} T / 2}{\sigma \sqrt{T}}\right)\right) \\
=e^{-r T}\left(1-F_{Z}\left(\frac{\sigma \sqrt{T}}{2}\right)\right) &
\end{aligned}
$$

