Math 235 Practice Problems for Exam October 4, 2013
Name:
Show All Work

1: Find all the solutions, if any, to the system of linear equations

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{4}=1 \\
& x_{3}+2 x_{4}=1 \\
& 2 x_{1}+4 x_{2}-3 x_{3}-8 x_{4}=-1 .
\end{aligned}
$$

Use Gauss elimination.
2: Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right), B=\left(\begin{array}{cc}
-1 & 0 \\
2 & 3 \\
-2 & 1
\end{array}\right) .
$$

a: Compute $A B$ if possible. Compute $B A$ if possible.
b: For appropriate choice of a, b the matrix B gives a function with domain \mathbb{R}^{a} and target \mathbb{R}^{b}. What are the numbers a and b ?
3: Let $u=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right), v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Write $u=x+y$ with x a scalar multiple of v and y orthogonal to v. This means that you are to find explicitly the two vectors x, y.

4a: Let $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$. Compute A^{-1}. You must show your work.
4b: Use your result in problem 4a to solve the system of equations

$$
\begin{aligned}
& 2 x+y=1 \\
& 3 x+2 y=2
\end{aligned}
$$

5a: Let $F: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ be linear. Define $\operatorname{ker}(F)$. Define what it means to be a subspace of \mathbb{R}^{m}.
5 b: Let S be a subset of \mathbb{R}^{n}. What does the phrase " x is a linear combination of the elements of S " mean? What does it mean to say that the span of S is all of \mathbb{R}^{n}.

5c: What is the rank of a matrix?
6: True or False. Justify your answer. Let M be a matrix of size 4×3. Assume that $M x=b, b \in \mathbb{R}^{4}$ has a solution and the rank of M is 2 . Then there are 3 free variables.

7: Let M be a matrix of size 4×4 and $b \in \mathbb{R}^{4}$. We are given that the equation $M x=b$ has a solution and it is unique. What is the rank of M ? Justify your answer.

8: Find the matrix of orthogonal projection onto the line $y=2 x$.

9: A town has two supermarkets, one named W and one named S. Each month 70% of the customers of W stick with W and 30% switch to S. Each month 80% of the customers of S stick with S and 20% switch to W. The total number of coustomers stays constant from month to month. Let $w(n), s(n)$ denote the number of customers of W, S during month n. Find a matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

so that

$$
\binom{w(n+1)}{s(n+1)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{w(n)}{s(n)} .
$$

Assume $w(0)=100, s(1)=50$. Compute, using M, the number of customers in month 1 of S, W, that is, compute $w(1), s(1)$.

10: Find the matrix M which represents reflection about the line L given by the equation

$$
y=(1 / 2) x
$$

in two ways:
10a: By writing the composition as a composition of rotations and reflection about the x-axis. Note that the line L makes an angle $\pi / 6$ with the x-axis.

10b: By using projection onto the line L to compute $M\binom{1}{0}$ and $M\binom{0}{1}$.
11 a: Define what it means for a function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ to be a linear transformation.
b: Are the following linear transformations? Why? Note that the why part of the question is very important.
b1: $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\binom{x}{y} \mapsto\binom{x+y-1}{3 x-y}$
b2: $F: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin (x)$
$\mathrm{b} 3: F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \vec{v} \mapsto(-1,2,3) \cdot v$.
12: Define the following terms:
a: linear combination
b: spans a subspace
c: subspace
d: kernel
e: image
f: rank.
You should say what kind of object each term applies to. For example we say "the rank of a matrix" or "of a linear map".

13: True or False. You must explain the reason for your answer.
a: If a matrix M is invertible, then kernel of M is just the zero vector.
b: If $u, v, w \in V, V$ a subspace of \mathbb{R}^{n}, then the vector $2 u-3 v+4 w$ is also an element of V.
c: If a 5 by 5 matrix A has rank 5 , then any linear system of equations with coefficient matrix A will have a unique solution.
d: There exists a 2×2 matrix B so that

$$
B\binom{1}{1}=\binom{1}{2},
$$

and

$$
B\binom{2}{2}=\binom{2}{1} .
$$

e: Let A be a matrix of size 3×5. Assume that the equation

$$
A x=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

has a solution. Then it has infinitely many solutions.
f: Let M be a matrix of size 5×5. Assume that for some $b \in \mathbb{R}^{5}$ the equation $A x=b$ in unknown x has a unique solution. Then A is invertible.

14: Let

$$
a=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), b=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), c=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Express

$$
d=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

as a linear combination of a, b, c.
15: Let

$$
A=\left(\begin{array}{ccccc}
1 & -1 & 2 & 3 & 1 \\
-1 & 1 & -1 & -4 & 1 \\
1 & -1 & 3 & 2 & 3
\end{array}\right) .
$$

15a: Find a set of vectors that spans the image of A.
15b: Find a set of vectors that spans the kernel of A and has no redundant elements.

