
Math 236 Problem Set 4 Spring, 2001

Due date postponed : Thurs., March 8, 2:30 p.m., LGRT 1623D mailbox

1. (Continuation of Set 3, Problem 4.) In Mathematica use the graphics primitive Line along
with any other appropriate functions to draw a figure that is roughly like the face on page
47—except use straight line segments instead of a circle and curved arcs. For each of the
matrices in Exercises 24, 26, 28, and 30, page 47, define a Mathematica function that is the
linear transformation whose matrix is the given matrix. Then in Mathematica calculate and
plot the image of the face under that linear transformation. You may wish to use the functions
view and image from notebook View.nb.

2. (a) Do page 61, Exercise 6.
(b) Use your answer to (a) to do page 61, Exercise 7.

3. (a) Do page 61, Exercise 10.
(b) Use your answer to (a) to do page 61, Exercise 11.

4. Do page 62, Exercise 24.

5. Do page 64, Exercise 44.

6. (Counts as three problems.) For this problem, you will modify my function gaussJordan to
create a new function named GJ, then test the latter. You must do this as prescribed below.

My function gaussJordan uses the Gauss-Jordan algorithm to return as its result the reduced
row-echelon form of any numeric matrix supplied as the argument. For example:

gaussJordan[Partition[{3, 2, -1, 1, 0, 6, 6, 2, 12, 0,
3, -2, 1, 11, 0, 0, 0, 0, 0, 0}, 5]]

{{1, 0, 0, 2, 0}, {0, 1, 0, -1, 0}, {0, 0, 1, 3, 0}, {0, 0, 0, 0, 0}}

My gaussJordan and various functions it references are all found in the notebook AboutGJ.nb
that you download. Among them are swap, scale, and roundoff. (You may use your own
swap and scale provided that you are absolutely certain they are correct.)

The only changes you should make to gaussJordan (besides changing its name to GJ) are
designed to minimize roundoff error. These changes are:

• Before beginning the step-by-step reduction, apply roundoff to change “small” entries
of the matrix to zero exactly.

• After each row scaling step and after each “zeroing-out” step, again apply roundoff to
change small entries to zero exactly. (Note that the “zeroing-out” in a given column
above and below the leading 1 is done all at once, for all rows, by means of my function
zeroUpDown rather than one row at a time by means of addrow.)

• When scaling a row, make its first nonzero entry exactly 1. Carry this out by means of a
new function putOne that changes the first nonzero entry to 1 exactly. Evidently, putOne
should have as arguments simply the position of the first nonzero entry and the matrix
itself (so putOne “figures out” what the scaling factor needs to be, uses scale to do the
scaling, and finally changes the first nonzero entry to 1 exactly. Thus GJ does not use
scale directly, but only indirectly by using putOne.

1



• (The most significant change!) Modify the Gauss-Jordan algorithm, as implemented in
my gaussJordan, so that it now uses partial pivoting :
With the usual Gauss-Jordan algorithm, you swap rows, if necessary, to bring into the
pivot position (in the next nonzero column) the first nonzero entry below the pivot posi-
tion. With partial pivoting, however, you swap rows to bring into the pivot position the
entry at or below the pivot position whose magnitude (absolute value) is greatest among
all such entries at or below the pivot position.
To help do the partial pivoting, define a separate little function pivotLocate that locates
the index of the requisite row to be swapped to put its first nonzero entry into the pivot
position.

Keep your definitions clean, reasonably brief, and easy to read (by somebody who knows
Mathematica). Besides putOne and pivotLocate, which you must define, you may want to
define other subsidiary functions in order to further “modularize” the program into smaller
chunks.

Test separately your putOne and pivotLocate with examples of your own. Then test your
entire GJ on some examples of your own. Do not turn in this testing of your own.

Turn in printouts of your GJ, putOne, pivotLocate, and any other subsidiary functions you
happen to define. However, you will get little credit for your work unless you also validate
your function GJ as follows. Turn in a printout of that validation.

To validate your GJ, be sure you have evaluated all the cells in your notebook involved in
defining GJ. Then follow the instructions in AboutGJ.nb about downloading and using my
encoded package vdGJ.m

When you evaluate the appropriate cells in AboutGJ.nb, the encoded package you already
downloaded will automatically be read into Mathematica. The package will generate some
test data—matrices custom-made for you—which it will display. Then it will automatically
evaluate your GJ with each test data matrix as argument and show you the result (if any).

Naturally, you should be sure your GJ not only completes executing without error, but also
gives the correct result for each such test. If not, it’s “back to the drawing board”. A GJ that
does not pass all the tests may receive significantly reduced credit!

Tip: Before validating, carefully design putOne and pivotLocate (and any other auxiliary
functions you want) and revise gaussJordan; then manually test each one yourself, paying
special attention to unusual cases for input. Don’t run the validator the first moment you
think you might have something that works! Running the validator over and over again while
trying to debug your functions is likely to waste a lot of time and effort!

2


