Algebra 411.2 Homework 8

Due November 10, in class.
All answers should be justified.

 \Diamond

0. Read chapters 10 and 11 in the book. (This is largely new material so one reads it to prepare for the lectures.)

 \Diamond

Left and right cosets of a subgroup. Let H be a subgroup of a group (G, \cdot) . For any element $g \in G$ the *left coset* of H through g is the subset $gH \stackrel{\text{def}}{=} \{g \cdot h; h \in H\}$. Similarly, the *right coset* of H through g is the subset $Hg \stackrel{\text{def}}{=} \{h \cdot g; h \in H\}$.

Denote by G/H the set of all left cosets of H in G and by $H\backslash G$ the set of all right cosets of H in G.

- 1. (a) Show that if the group G is abelian then the left cosets and the right cosets are always the same: gH = H for any $g \in G$.
- (b) For the subgroup $N\mathbb{Z}$ of a \mathbb{Z} find all cosets. How many cosets are there, i.e., howmany elements in $\mathbb{Z}/N\mathbb{Z}$?
- **2.** Let H be a subgroup of a group (G, \cdot) .
- (a) Show that for $g \in G$ the left multiplication function $L_g: H \to gH$ by $L_g(h) \stackrel{\text{def}}{=} g \cdot h$ is a well defined bijection between H and its left coset gH.
- (b) Show that if H is finite then all left cosets uH, $u \in G$ of H and all right cosets Hv, $v \in G$ of H have the same number of elements: |uH| = |Hv|.
- **3.** Let H be a subgroup of a group (G, \cdot) .
- (a) Show that for any $u, v \in G$ the left costes uH and vH are either the same or disjoint. (In other words if uH and vH have some common element x then uH = vH).

 \Diamond

4. Let $G = GL_2(\mathbb{R})$ and consider its subgroups

$$B = \left\{ \begin{pmatrix} a & x \\ 0 & b \end{pmatrix}; \ a, b, x \in \mathbb{R}, \ a \neq 0, \ b \neq 0 \right\} \quad \text{and} \quad N = \left\{ \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}; \ y \in \mathbb{R} \right\}.$$

- (a) Show that N is a normal subgroup of B.
- (b) Show that N is not a normal subgroup of G.
- (c) Find an element g in G such that the left coset gN and the right coset Ng are not the same.
- **5.** (a) For any homomorphism of groups $\phi:(G,\cdot)\to(h,\cdot)$ show that $\mathrm{Ker}(\phi)$ is a normal subgroup of H.
- (b) Find an example of a homomorphism of groups $\phi:(G,\cdot)\to(h,\cdot)$ such that $Im(\phi)$ is not a normal subgroup of H.
- **6.** Problem 1 in section 11 in the book.
- 7. Problem 3 in section 11 in the book.

Remark. The last time to ask questions is Tuesday!