Algebra $411.2 \quad$ Homework 8

Due November 10, in class.
All answers should be justified.
0. Read chapters 10 and 11 in the book. (This is largely new material so one reads it to prepare for the lectures.)

Left and right cosets of a subgroup. Let H be a subgroup of a group (G, \cdot). For any element $g \in G$ the left coset of H through g is the subset $g H \stackrel{\text { def }}{=}\{g \cdot h ; h \in H\}$. Similarly, the right coset of H through g is the subset $H g \stackrel{\text { def }}{=}\{h \cdot g ; h \in H\}$.
Denote by G / H the set of all left cosets of H in G and by $H \backslash G$ the set of all right cosets of H in G.

1. (a) Show that if the group G is abelian then the left cosets and the right cosets are always the same: $g H=H$ for any $g \in G$.
(b) For the subgroup $N \mathbb{Z}$ of a \mathbb{Z} find all cosets. How many cosets are there, i.e., howmany elements in $\mathbb{Z} / N \mathbb{Z}$?
2. Let H be a subgroup of a group (G, \cdot).
(a) Show that for $g \in G$ the left multiplication function $L_{g}: H \rightarrow g H$ by $L_{g}(h) \stackrel{\text { def }}{=} g \cdot h$ is a well defined bijection between H and its left coset $g H$.
(b) Show that if H is finite then all left cosets $u H, u \in G$ of H and all right cosets $H v, v \in G$ of H have the same number of elements: $|u H|=|H v|$.
3. Let H be a subgroup of a group (G, \cdot).
(a) Show that for any $u, v \in G$ the left costes $u H$ and $v H$ are either the same or disjoint. (In other words if $u H$ and $v H$ have some common element x then $u H=v H$).

Normal subgroups. A subgroup N of a group G is said to be normal if it is preserved under conjugation by elements of G, i.e., for any $n \in N$ and any $g \in G$ the g-conjugate ${ }^{g} n \stackrel{\text { def }}{=} g n g^{-1}$ of n, is again in N.
4. Let $G=G L_{2}(\mathbb{R})$ and consider its subgroups

$$
B=\left\{\left(\begin{array}{cc}
a & x \\
0 & b
\end{array}\right) ; a, b, x \in \mathbb{R}, a \neq 0, b \neq 0\right\} \quad \text { and } \quad N=\left\{\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) ; y \in \mathbb{R}\right\} .
$$

(a) Show that N is a normal subgroup of B.
(b) Show that N is not a normal subgroup of G.
(c) Find an element g in G such that the left coset $g N$ and the right coset $N g$ are not the same.
5. (a) For any homomorphism of groups $\phi:(G, \cdot) \rightarrow(h, \cdot)$ show that $\operatorname{Ker}(\phi)$ is a normal subgroup of H.
(b) Find an example of a homomorphism of groups $\phi:(G, \cdot) \rightarrow(h, \cdot)$ such that $\operatorname{Im}(\phi)$ is not a normal subgroup of H.
6. Problem 1 in section 11 in the book.
7. Problem 3 in section 11 in the book.

Remark. The last time to ask questions is Tuesday!

