Algebra $411.2 \quad$ Homework 7

Due November $3^{\text {rd }}$, in class.
All answers should be justified.
\bigcirc
0. Read chapters 8 and 9 in the book. (This is largely new material so one reads it to prepare for the lectures.)
In the notes read sections 1.2, 1.4, 4.4 and the appendix A .
\circ

1. An element g of a group (G, \cdot) defines three functions from G to G

- The left multiplication function $L_{g}: G \rightarrow G$ defined by $L_{g}(x) \stackrel{\text { def }}{=} g \cdot x$;
- The right multiplication function $R_{g}: G \rightarrow G$ defined by $R_{g}(x) \stackrel{\text { def }}{=} x \cdot g^{-1}$;
- The conjugation function $C_{g}: G \rightarrow G$ defined by $C_{g}(x)=g \cdot x g^{-1}$.

Prove that
(1) For $a \in G$

$$
L_{a} \circ R_{a}=C_{a}=R_{a} \circ L_{a}
$$

(2) For $a, b \in G$ one has

$$
L_{a} \circ L_{b}=L_{a b} \quad \text { and } \quad R_{a} \circ R_{b}=R_{a b} \quad \text { and } \quad C_{a} \circ C_{b}=C_{a b} .
$$

Also, for the neutral element $e \in G$

$$
L_{e}=R_{e}=C_{e}=i d_{G} .
$$

(3) For $a \in G$, the conjugation function $C_{a}: G \rightarrow G$ is an isomorphism of groups.
2. Let p and q be positive integers and $n=p q$.
(a) Show that the function $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{p}$ defined by: $\phi(k)=q k \bmod p$, for $k \in \mathbb{Z}_{n}$; is a well defined homomorphism.
(b) Find a generator of the image subgroup $\operatorname{Im}(\phi) \subseteq \mathbb{Z}_{p}$.
(b) Find a generator of the kernel $\operatorname{Ker}(\phi) \subseteq \mathbb{Z}_{n}$.
[Recall what image and kernel are from Homework 56.] [If needed consider the example when $p=2$ and $q=3$.]

Actions of groups on sets. An action $*$ of a group G on a set X is a rule which assigns to each $g \in G$ and $x \in X$ an element $g * x$ of X; provided that the following properties are satisfied
(1) (Associativity) For $a, b \in G$ and $x \in X, \quad a *(b * x)=(a b) * x$.
(2) For $x \in X, \quad e * x=x$.
3. ["Any group G acts on itself."] Show that any group G acts on the set G by the conjugation rule

$$
g * x \stackrel{\text { def }}{=} g x g^{-1} \text { for } g \in G \quad \text { and } \quad x \in X=G
$$

[This is called the conjugation action of G on itself.]
Orbits of group actions. When a group G acts on a set X then the orbit $G * a$ of an element $a \in X$ is the subset of X

$$
G * a \stackrel{\text { def }}{=}\{g * a ; g \in G\} \text {. }
$$

So, it consists of all elements x of the set X that are of the form $g * a$, i.e., such that x can be obtained from a by acting on a by some element g of G. The set of all orbits of G in X is denoted

$$
G \backslash X \stackrel{\text { def }}{=}\{G * a ; a \in X\}
$$

It is called the quotient of X by the action of the group G.
4. Consider the action of the group $G=S_{3}$ on itself by conjugation. Find all orbits of this action. (The orbits of G on itself are called conjugacy classes.)
5. For the subgroup H of a groups (G, \cdot) show that
(1) The rule that associates to a pair of $h \in H$ and $g \in G$ the element $h * g \xlongequal{=} h \cdot g$ is an action of H on G.
(2) The rule that associates to a pair of $h \in H$ and $g \in G$ the element $h \star g \stackrel{\text { def }}{=} g \cdot h^{-1}$ is an action of H on G.
(3) In the case when $G=\mathbb{Z}$ and H is the subgroup $3 \mathbb{Z}$ of multiples of 3 , find all orbits of the action $*$ of H on G. How many of them are there?

