Algebra 411.2 Homework 7

Due November 3^{rd} , in class.

All answers should be justified.

 \Diamond

0. Read chapters 8 and 9 in the book. (This is largely new material so one reads it to prepare for the lectures.)

In the notes read sections 1.2, 1.4, 4.4 and the appendix A.

 \Diamond

- 1. An element g of a group (G,\cdot) defines three functions from G to G
 - The left multiplication function $L_g: G \to G$ defined by $L_g(x) \stackrel{\text{def}}{=} g \cdot x$;
 - The right multiplication function $R_g: G \to G$ defined by $R_g(x) \stackrel{\text{def}}{=} x \cdot g^{-1}$;
 - The conjugation function $C_g: G \to G$ defined by $C_g(x) = g \cdot xg^{-1}$.

Prove that

(1) For $a \in G$

$$L_a \circ R_a = C_a = R_a \circ L_a.$$

(2) For $a, b \in G$ one has

$$L_a \circ L_b = L_{ab}$$
 and $R_a \circ R_b = R_{ab}$ and $C_a \circ C_b = C_{ab}$.

Also, for the neutral element $e \in G$

$$L_e = R_e = C_e = id_G.$$

- (3) For $a \in G$, the conjugation function $C_a: G \to G$ is an isomorphism of groups.
- **2.** Let p and q be positive integers and n = pq.
- (a) Show that the function $\phi : \mathbb{Z}_n \to \mathbb{Z}_p$ defined by: $\phi(k) = qk \mod p$, for $k \in \mathbb{Z}_n$; is a well defined homomorphism.
- (b) Find a generator of the image subgroup $\operatorname{Im}(\phi) \subseteq \mathbb{Z}_p$.
- (b) Find a generator of the kernel $Ker(\phi)\subseteq \mathbb{Z}_n$.

[Recall what image and kernel are from Homework 56.] [If needed consider the example when p=2 and q=3.]

1

Actions of groups on sets. An action * of a group G on a set X is a rule which assigns to each $g \in G$ and $x \in X$ an element g * x of X; provided that the following properties are satisfied

- (1) (Associativity) For $a, b \in G$ and $x \in X$, a * (b * x) = (ab) * x.
- (2) For $x \in X$, e * x = x.
- **3.** ["Any group G acts on itself."] Show that any group G acts on the set G by the conjugation rule

$$g * x \stackrel{\text{def}}{=} gxg^{-1}$$
 for $g \in G$ and $x \in X = G$.

[This is called the *conjugation action* of G on itself.]

Orbits of group actions. When a group G acts on a set X then the orbit G*a of an element $a \in X$ is the subset of X

$$G*a \ \stackrel{\mathit{def}}{=} \ \{g*a; \ g \in G\}.$$

So, it consists of all elements x of the set X that are of the form g*a, i.e., such that x can be obtained from a by acting on a by some element g of G. The set of all orbits of G in X is denoted

$$G \backslash X \stackrel{def}{=} \{G * a; a \in X\}.$$

It is called the quotient of X by the action of the group G.

- 4. Consider the action of the group $G = S_3$ on itself by conjugation. Find all orbits of this action. (The orbits of G on itself are called *conjugacy classes*.)
- 5. For the subgroup H of a groups (G,\cdot) show that
 - (1) The rule that associates to a pair of $h \in H$ and $g \in G$ the element $h * g \stackrel{\text{def}}{=} h \cdot g$ is an action of H on G.
 - (2) The rule that associates to a pair of $h \in H$ and $g \in G$ the element $h \star g \stackrel{\text{def}}{=} g \cdot h^{-1}$ is an action of H on G.
 - (3) In the case when $G = \mathbb{Z}$ and H is the subgroup $3\mathbb{Z}$ of multiples of 3, find all orbits of the action * of H on G. How many of them are there?