Algebra 411.1

Homework 4

Due Thursday October 13, in class.

All answers should be justified!

0
Problems from the book. 3.6, 3.7, 4.13,

1. (a) Show that the subset $A=\{0,2,4\}$ of $\left(\mathbb{Z}_{6},+_{6}\right)$ is a subgroup.
(b) Determine the order of the group $\left(\mathbb{Z}_{n},+_{n}\right)$.
(c) Determine the order of each element of $\left(\mathbb{Z}_{8},+{ }_{8}\right)$.
2. Recall that the set $G L_{2}(\mathbb{R})$ of 2×2 matrices with a nonzero determinant (i.e., the invertible matrices), is a group for the operation of matrix multiplication. Show that the following subsets of $G L_{2}(\mathbb{R})$ are subgroups :
(1) The diagonal matrices

$$
H \stackrel{\text { def }}{=}\left\{\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right) \in G L_{2}(\mathbb{R})\right\} .
$$

(2) The upper triangular matrices

$$
B \stackrel{\text { def }}{=}\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \in G L_{2}(\mathbb{R})\right\} .
$$

3. We say that two elements a, b in a group (G, \cdot) commute if $a \cdot b=b \cdot a$. The center $Z(G)$ of a group G is defined as the subset of all $a \in G$ that commute with all elements of G.
(a) Prove that the center $Z(G)$ is a subgroup of G.
(b) The group (G, \cdot) is said to be commutative or abelian) if for any two elements a, b of G we have $a \cdot b=b \cdot a$. If G is commutative what is the center $Z(G)$ of G ?
(c) Prove that cyclic groups are commutative. ${ }^{(1)}$

[^0]0. Read the notes on the web page: chapters 0-4.

[^0]: ${ }^{1} \mathrm{~A}$ group G is cyclic if it contains an element g which generates G in the sense that G consists of all powers of g.

