Algebra 411.1

Homework 4

Due Thursday October 13, in class.

All answers should be justified!

 \Diamond

Problems from the book. 3.6, 3.7, 4.13,

- 1. (a) Show that the subset $A = \{0, 2, 4\}$ of $(\mathbb{Z}_6, +_6)$ is a subgroup.
- (b) Determine the order of the group $(\mathbb{Z}_n, +_n)$.
- (c) Determine the order of each element of $(\mathbb{Z}_8, +_8)$.
- **2.** Recall that the set $GL_2(\mathbb{R})$ of 2×2 matrices with a nonzero determinant (i.e., the invertible matrices), is a group for the operation of matrix multiplication. Show that the following subsets of $GL_2(\mathbb{R})$ are subgroups :
 - (1) The diagonal matrices

$$H \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \in GL_2(\mathbb{R}) \right\}.$$

(2) The upper triangular matrices

$$B \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in GL_2(\mathbb{R}) \right\}.$$

- **3.** We say that two elements a, b in a group (G, \cdot) commute if $a \cdot b = b \cdot a$. The center Z(G) of a group G is defined as the subset of all $a \in G$ that commute with all elements of G.
- (a) Prove that the center Z(G) is a subgroup of G.
- (b) The group (G, \cdot) is said to be *commutative* or *abelian*) if for any two elements a, b of G we have $a \cdot b = b \cdot a$. If G is commutative what is the center Z(G) of G?
- (c) Prove that cyclic groups are commutative. (1)

 \Diamond

¹A group G is *cyclic* if it contains an element g which *generates* G in the sense that G consists of all powers of g.

0. Read the notes on the web page: chapters 0-4.