Algebra 411.1

Homework 3

Due Thursday October 6, in class.

All answers should be justified!

[Congruence modulo N.] Let N be an integer. We say that N divides n (symbolically $N \mid n$) if there is an integer q such that $n=N q$. We say that integers m, n are congruent modulo N (symbolically $m \stackrel{N}{\equiv} n$) if N divides the difference $n-m$.

1. (a) Show that the congruence modulo N is an equivalence relation, i.e.,
(1) [Relation is reflexive.] For each $n \in \mathbb{N}$ we have $n \stackrel{N}{\underline{=}} n$.
(2) [Relation is symmetric.] If $m \stackrel{N}{\underline{=}} n$. then $n \stackrel{N}{\equiv} m$.
(3) [Relation is transitive.] If $m \stackrel{N}{\equiv} n$ and $n \stackrel{N}{=} p$. then $m \stackrel{N}{\underline{=}} p$.

From now on assume that $N>0$.
(b) Show that any integer n is congruent modulo N to its remainder modulo $N: n \stackrel{N}{\equiv} R_{N}(n)$.
(c) Prove that $m \stackrel{N}{\equiv} n$ iff $R_{N}(m)=R_{N}(n)$.
(d) Show that for each $n \in \mathbb{Z}$ the remainder $R_{N}(n)$ is the unique number r in the set $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$ such that $r \stackrel{N}{\equiv} n$.
2. Let N be a positive integer. (a) Show that for $a, b \in \mathbb{Z}_{N}$
(1) $a+{ }_{N} b$ is the unique integer that both: (i) lies in \mathbb{Z}_{N} and $\mathrm{i}(\mathrm{ii})$ is congruent modulo N to $a+b$.
(2) $a \cdot{ }_{N} b$ is the unique integer that both: (i) lies in \mathbb{Z}_{N} and (ii) is congruent modulo N to $a b$.
(b) Show that congruences modulo N can be added and multiplied. In other words if $m \stackrel{N}{\equiv} m^{\prime}$ and $n \stackrel{N}{\equiv} n^{\prime}$ then $m+n \stackrel{N}{\equiv} m^{\prime}+n^{\prime}$ and $m n \stackrel{N}{\equiv} m^{\prime} n^{\prime}$
(c) For $a, b \in \mathbb{Z}_{N}, a \stackrel{N}{\equiv} b$ is equivalent to $a=b$.
3. Show that for any positive integer N :
(a) $\left(\mathbb{Z}_{N},+_{N}\right)$ and $\left(\mathbb{Z}_{N}, \cdot_{N}\right)$ are both monoids and both operations are commutative.
(b) Show that $\left(\mathbb{Z}_{N},+_{N}\right)$ is a group.
(c) Show that $\left(\mathbb{Z}_{N}^{*}, \cdot_{N}\right)$ is a group (here, \mathbb{Z}_{N}^{*} denotes the invertible elements in the monoid $\left.\left(\mathbb{Z}_{N},{ }^{\prime}\right)\right)$.
[Hint.] The definition $a+_{N} b \stackrel{\text { def }}{=} R_{N}(a+b)$ is good for calculating examples. However, from this point if you calculate what the associativity of addition claim $\left(a+{ }_{N} b\right)+_{N} c=$ $a+_{N}\left(b+{ }_{N} c\right)$ means, you will get the equation $R_{N}\left(R_{N}(a+b)+c\right)=R_{N}\left(a+R_{N}(b+c)\right)$. This is true but may be confusing to check directly. You should rather use the description of $a+_{N} b$ from problem 2. By problem 2c, you need to explain why: (i) both $\left(a+{ }_{N} b\right)+_{N} c$ and $a+_{N}\left(b+_{N} c\right)$ are in \mathbb{Z}_{N} and that (ii) $\left(a+_{N} b\right)+_{N} c$ and $a+_{N}\left(b+_{N} c\right)$ are congruent modulo N. [Hint. ${ }^{2}$] It is not difficult to check (using problems 1 and 2) that both of these numbers are congruent modulo N to $a+b+c$!
[Notation.] Group $\left(\mathbb{Z}_{N}^{*}, \cdot\right)$ is sometimes denoted $U(N)$.
4. (a) Find the orders of groups $U(3), U(9), U(27)$.
(b) Guess the order of $U\left(3^{n}\right)$ for any n.
(c) Can you guess which elements r of \mathbb{Z}_{N} are in \mathbb{Z}_{N}^{*} ?
\bigcirc
5. In S_{10} consider the permutation

$$
\sigma=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
9 & 4 & 7 & 6 & 5 & 2 & 8 & 10 & 1 & 3
\end{array}\right)
$$

(a) Calculate σ in the cycle notation.
(b) Calculate the powers of σ and its order using the cycle notation.
(c) Make a guess of how the order of any permutation is related to the lengths of cycles in this permutation.
0. Reread sections 4 and 5 in the book.

