Algebra 411.1

Homework 3

Due Thursday October 6, in class.

All answers should be justified!

 \heartsuit

[Congruence modulo N.] Let N be an integer. We say that N divides n (symbolically N|n) if there is an integer q such that n = Nq. We say that integers m, n are congruent modulo N (symbolically $m \equiv n$) if N divides the difference n - m.

- 1. (a) Show that the congruence modulo N is an equivalence relation, i.e.,
 - (1) [Relation is reflexive.] For each $n \in \mathbb{N}$ we have $n \stackrel{N}{=} n$.
 - (2) [Relation is symmetric.] If $m \stackrel{N}{\equiv} n$. then $n \stackrel{N}{\equiv} m$.
 - (3) [Relation is transitive.] If $m \stackrel{N}{\equiv} n$ and $n \stackrel{N}{\equiv} p$. then $m \stackrel{N}{\equiv} p$.

From now on assume that N > 0.

- (b) Show that any integer n is congruent modulo N to its remainder modulo $N: n \stackrel{N}{\equiv} R_N(n)$.
- (c) Prove that $m \equiv n$ iff $R_N(m) = R_N(n)$.
- (d) Show that for each $n \in \mathbb{Z}$ the remainder $R_N(n)$ is the unique number r in the set $\mathbb{Z}_N = \{0, 1, ..., N-1\}$ such that $r \stackrel{N}{\equiv} n$.

 \Diamond

- **2.** Let N be a positive integer. (a) Show that for $a, b \in \mathbb{Z}_N$
 - (1) $a +_N b$ is the unique integer that both: (i) lies in \mathbb{Z}_N and i(ii) is congruent modulo N to a + b.
 - (2) $a \cdot_N b$ is the unique integer that both: (i) lies in \mathbb{Z}_N and (ii) is congruent modulo N to ab.
- (b) Show that congruences modulo N can be added and multiplied. In other words if $m \stackrel{N}{\equiv} m'$ and $n \stackrel{N}{\equiv} n'$ then $m + n \stackrel{N}{\equiv} m' + n'$ and $m n \stackrel{N}{\equiv} m' n'$
- (c) For $a, b \in \mathbb{Z}_N$, $a \stackrel{N}{\equiv} b$ is equivalent to a = b.

- **3.** Show that for any positive integer N:
- (a) $(\mathbb{Z}_N, +_N)$ and (\mathbb{Z}_N, \cdot_N) are both monoids and both operations are commutative.
- (b) Show that $(\mathbb{Z}_N, +_N)$ is a group.
- (c) Show that $(\mathbb{Z}_N^*, \cdot_N)$ is a group (here, \mathbb{Z}_N^* denotes the invertible elements in the monoid (\mathbb{Z}_N, \cdot_N)).

[Hint.] The definition $a +_N b \stackrel{\text{def}}{=} R_N(a+b)$ is good for calculating examples. However, from this point if you calculate what the associativity of addition claim $(a +_N b) +_N c = a +_N (b +_N c)$ means, you will get the equation $R_N(R_N(a+b)+c) = R_N(a+R_N(b+c))$.

This is true but may be confusing to check directly. You should rather use the description of $a +_N b$ from problem 2. By problem 2c, you need to explain why: (i) both $(a +_N b) +_N c$ and $a +_N (b +_N c)$ are in \mathbb{Z}_N and that (ii) $(a +_N b) +_N c$ and $a +_N (b +_N c)$ are congruent modulo N. [Hint.²] It is not difficult to check (using problems 1 and 2) that both of these numbers are congruent modulo N to a + b + c!

[Notation.] Group (\mathbb{Z}_N^*, \cdot) is sometimes denoted U(N).

- **4.** (a) Find the orders of groups U(3), U(9), U(27).
- (b) Guess the order of $U(3^n)$ for any n.
- (c) Can you guess which elements r of \mathbb{Z}_N are in \mathbb{Z}_N^* ?

 \Diamond

5. In S_{10} consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 7 & 6 & 5 & 2 & 8 & 10 & 1 & 3 \end{pmatrix}.$$

- (a) Calculate σ in the cycle notation.
- (b) Calculate the powers of σ and its order using the cycle notation.
- (c) Make a guess of how the order of any permutation is related to the lengths of cycles in this permutation.

 \Diamond

0. Reread sections 4 and 5 in the book.