Algebra 411.2

Homework 2

Due Thursday September 29, in class.

All answers should be justified!

0
[Division of integers.] Let n be a positive integer. By dividing an integer N by n we man finding two integers q and r such that

- $q n$ is the largest multiple of n which is still $\leq N$;
- $r=N-q n$ is the difference between N and this closest multiple of n which is not $>N$.

Then q is called the quotient for the of the division of N by n. Also, r is called the reminder of N modulo n, so we denote the reminder r by $R_{n}(N)$.
For instance if we are dividing $N=17$ by $n=7$ then $q=2$ and $r=3$ since we have $2 \cdot 7 \leq 17<3.7$ and also $17-2 \cdot 7=3$. So, $R_{7}(17)=3$.

1. [Euclidean division.] (a) Explain why for the division of N by n one has
(1) $N=q n+r$.
(2) $0 \leq r<n$.
(b) Find q and r when
(1) $N=351$ and $n=11$,
(2) $N=-21$ and $n=11$,
(3) $N=-351$ and $n=11$,
[Addition and multiplication modulo n.] For a positive integer n, denote by \mathbb{Z}_{n} the set of integers $\{0,1,2,3, \ldots, n-1\}$. We will define on \mathbb{Z}_{n} the operation $+_{n}$ of addition modulo n and the operation ${ }_{n}$ of multiplication modulo n by

- For $a, b \in \mathbb{Z}_{n}$ let $a+_{n} b \stackrel{\text { def }}{=}$ the remainder of dividing $a+b$ with n.
- For $a, b \in \mathbb{Z}_{n}$ let $a \cdot b \stackrel{\text { def }}{=}$ the remainder of dividing $a \cdot b$ with n.
[Group \mathbb{Z}_{n}.] We will show in class that $\left(\mathbb{Z}_{n},+_{n}\right)$ is a group with neutral element 0 . When we say "group \mathbb{Z}_{n} " we mean the group $\left(\mathbb{Z}_{n},+_{n}\right)$.

2. (a) Write the tables for operations $+_{5}$ and $\cdot 5$ on \mathbb{Z}_{5}.
(b) Write the tables for operations $+_{9}$ and $\cdot 9$ on \mathbb{Z}_{9}.
[Powers ef elements of a group.] For an element g of a group (G, \circ) we define the nonnegative powers of g by: zero ${ }^{\text {th }}$ power of g is e, the $1^{\text {st }}$ power of g is g and for $n>1$ the $n^{\text {th }}$ power of g is $g \circ g \circ \cdots \circ g$ (the product of n copies of g).
3. In the group S_{5} find all nonnegative powers of the permutation $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3\end{array}\right)$.
4. (a) Assume that $\left(\mathbb{Z}_{n},+_{n}\right)$ is a group with neutral element 0 . Find inverses of
(1) 3 in $\left(\mathbb{Z}_{11},+_{11}\right)$,
(2) 12 in $\left(\mathbb{Z}_{25},{ }_{25}\right)$,
(3) 16 in $\left(\mathbb{Z}_{32},+_{32}\right)$,
(b) Find all nonnegative powers of
(1) element 3 in $\left(\mathbb{Z}_{15},+_{15}\right)$.
(2) element 4 in $\left(\mathbb{Z}_{15},+_{15}\right)$.
(3) element 5 in $\left(\mathbb{Z}_{15},+_{15}\right)$.
5. We will show in class that the subset $\mathbb{Z}_{15}^{*} \stackrel{\text { def }}{=}\{1,2,4,7,8,11,13,14\}$ of \mathbb{Z}_{15} is a group for the operation $\cdot 15$ and the neutral element (unit) is 1 . Find inverses of all elements.
6. Read sections 4 and 5 in the book.
