Algebra 411.2

Homework 2

Due Thursday September 29, in class.

All answers should be justified!

 \Diamond

[Division of integers.] Let n be a positive integer. By dividing an integer N by n we man finding two integers q and r such that

- qn is the largest multiple of n which is still $\leq N$;
- r = N qn is the difference between N and this closest multiple of n which is not > N.

Then q is called the *quotient* for the of the division of N by n. Also, r is called the reminder of N modulo n, so we denote the reminder r by $R_n(N)$.

For instance if we are dividing N=17 by n=7 then q=2 and r=3 since we have $2\cdot 7 \leq 17 < 3\cdot 7$ and also $17-2\cdot 7=3$. So, $R_7(17)=3$.

- 1. [Euclidean division.] (a) Explain why for the division of N by n one has
 - (1) N = qn + r.
 - (2) $0 \le r < n$.
- (b) Find q and r when
 - (1) N = 351 and n = 11,
 - (2) N = -21 and n = 11,
 - (3) N = -351 and n = 11,

 \Diamond

[Addition and multiplication modulo n.] For a positive integer n, denote by \mathbb{Z}_n the set of integers $\{0, 1, 2, 3, ..., n-1\}$. We will define on \mathbb{Z}_n the operation $+_n$ of addition modulo n and the operation \cdot_n of multiplication modulo n by

- For $a, b \in \mathbb{Z}_n$ let $a +_n b \stackrel{\text{def}}{=}$ the remainder of dividing a + b with n.
- For $a, b \in \mathbb{Z}_n$ let $a \cdot b \stackrel{\text{def}}{=}$ the remainder of dividing $a \cdot b$ with n.

[Group \mathbb{Z}_n .] We will show in class that $(\mathbb{Z}_n, +_n)$ is a group with neutral element 0. When we say "group \mathbb{Z}_n " we mean the group $(\mathbb{Z}_n, +_n)$.

- **2.** (a) Write the tables for operations $+_5$ and $\cdot 5$ on \mathbb{Z}_5 .
- (b) Write the tables for operations $+_9$ and \cdot_9 on \mathbb{Z}_9 .

 \Diamond

[Powers ef elements of a group.] For an element g of a group (G, \circ) we define the non-negative powers of g by: zeroth power of g is e, the 1st power of g is g and for n > 1 the nth power of g is $g \circ g \circ \cdots \circ g$ (the product of n copies of g).

- **3.** In the group S_5 find <u>all</u> nonnegative powers of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$.
- **4.** (a) Assume that $(\mathbb{Z}_n, +_n)$ is a group with neutral element 0. Find inverses of
 - (1) 3 in $(\mathbb{Z}_{11}, +_{11})$,
 - (2) 12 in $(\mathbb{Z}_{25}, +_{25})$,
 - (3) 16 in $(\mathbb{Z}_{32}, +_{32})$,
- (b) Find <u>all</u> nonnegative powers of
 - (1) element 3 in $(\mathbb{Z}_{15}, +_{15})$.
 - (2) element 4 in $(\mathbb{Z}_{15}, +_{15})$.
 - (3) element 5 in $(\mathbb{Z}_{15}, +_{15})$.
- **5.** We will show in class that the subset $\mathbb{Z}_{15}^* \stackrel{\text{def}}{=} \{1, 2, 4, 7, 8, 11, 13, 14\}$ of \mathbb{Z}_{15} is a group for the operation \cdot_{15} and the neutral element (unit) is 1. Find inverses of all elements.

 \Diamond

0. Read sections 4 and 5 in the book.