Algebra 411.1

 \Diamond

Homework 1

 \Diamond

Due Thursday September 22, in class.

 \Diamond

- **0.** Read the book: chapter 3.
- 1. Problem 1. Prove that a function f from a set A to a set B has inverse function iff f is a bijection.

[We did this in class and this is also in books. You need to give your own explanation in your own words.]

 \Diamond

2. Do the following problems from the book: 2.8, 2.9, 2.10, 3.11.

[Remember you can ask questions in class on Tuesday.]

 \Diamond

[[A group (G, \circ) is said to be *abelian* or *commutative* if for any $a, b \in G$ we have $b \circ a = a \circ b$. (For instance $(\mathbb{R}, +)$ is abelian but the symmetric groups S_n are not abelian for n > 2.)]]