D-MODULE LANGLANDS CONJECTURE IN POSITIVE CHARACTERISTIC BEZRUKAVNIKOV-BRAVERMAN

MANU CHAO

Contents

1.	Crystalline Differential operators	1
1.1.	. Critical quantization	2
2.	Gerbs	2
3.	Geometric Langlands conjecture	4
4.	Geometric Langlands conjecture for D-modules in positive characteristic	4

1. Crystalline Differential operators

Let X be a smooth algebraic variety over a closed field \mathbbm{k} of characteristic p. We consider the sheaf of crystalline differential operators $\mathcal{D}_X \stackrel{\text{def}}{=} U_{\mathcal{O}_X}(\mathcal{T}_X)$.

- 1.0.1. Lemma. (a) $Z(\mathcal{D}_X) = \mathcal{O}_{T^*X^{(1)}}$
- (b) \mathcal{D}_X is Azumaya over $T^*X^{(1)}$.
- (c) Azumaya algebra \mathcal{D}_X splits over the conormal Lagrangian T_Y^*X for any submanifold $Y \subseteq X$.
- 1.0.2. The support and p-curvature of a D-module. We consider \mathcal{D}_X as an algebra sheaf over $T^*X^{(1)}$. Then \mathcal{D}_X -modules localize on $T^*X^{(1)}$.

The *p-curvature* of a D-module \mathcal{F} is defined as the action of the center

$$\psi: \mathcal{F} \to \mathcal{F} \otimes \Omega_{X^{(1)}}, \quad \langle \psi f, \partial^{(1)} \rangle \stackrel{\text{def}}{=} (\partial^p - \partial^{[p]}) f.$$

One can think of p-curvature as a map

$$\psi_{\mathcal{F}} \in \mathcal{E}nd_{\mathcal{D}}(\mathcal{F}) \otimes \Omega^1_{X^{(1)}}.$$

Date: ?

2 MANU CHAO

Let us say that projectively p-flat D-modules are those with scalar p-curvature

$$\psi_{\mathcal{F}} \in 1_{\mathcal{F}} \otimes \Omega^1_{X^{(1)}}.$$

In this case the p-curvature ψ is a 1-form on $X^{(1)}$ and $\operatorname{supp}(\mathcal{F})$ lies in the graph $\Gamma_{\psi} \subseteq T^*X^{(1)}$.

Remark. This looks like microlocalization however, it is not the standard one but rather alike the A-brane version of Kapustin-Nadler-Zaslow that is used in the Kapustin-Witten approach to geometric Langlands. The traditional microsupport is conelike (however there is a delocalized version by Hormander ...?).

1.0.3. Splitting gives a commutative picture.

1.1. Critical quantization.

2. Gerbs

2.0.1. The classifying stack B(G). Let G be a group bundle over X. When G acts on a scheme Y over X, we get the quotient stack Y/G which is determined (and defined) by decribing Hom(S,Y/G) for any scheme S. The sapce of maps Hom(S,Y/G) is the category of pairs (P,F) where P is a G-torsor over S and $F:P\to Y$ is a G-map.

We are interested in the classifying stack $B(G) \stackrel{\text{def}}{=} X/G$.

Lemma. Let G be a group bundle over X.

- (a) There is a canonical map $B(G) \stackrel{\text{def}}{=} X/G \to X$.
- (b) The sheaf of sections $\underline{B(G)}$ of B(G) over X is the sheaf of categories $\mathcal{T}ors_G$ of G-torsors.
- (c) The category Coh[B(G)] of coherent sheaves on the stack B(G) is the category $Coh_G(X)$ of G-equivaraiant coherent sheaves on X.
- *Proof.* (a) Having a map $X/G \to X$ means having a transformation of functors $\operatorname{Hom}(-,X/A) \to \operatorname{Hom}(-,X)$. For any scheme S, to any map $(S \leftarrow P \xrightarrow{F} X) : S \to X/G$ one canonically associates a map $\overline{F}: S \to X$, the factorization of F which exists since the G-action on X is trivial.
- (b) The sheaf of sections X/G of $X/G \to X$ is given by $X/G(U) = \Gamma(U, X/G) = Map_U(U, X/G)$. Now, a map $U \to X/G$ is a pairs of a G-torsor $P \xrightarrow{\alpha} U$ over U and a G-map $F: P \to X$. This is a section iff it is a map over U. The last condition means that F maps P to U and that this map coincides with the structure map α . So,

$$X/G = Tors(G).$$

Corollary. For a commutative group A over X, the stack B(A) is a group stack over X.

Proof. When A is commutative, the sheaf of sections $\underline{B(A)} = \mathcal{T}ors_A$ has a structure of an "abelian group category" (Picard category) – since left and right A-torsors coincide we have multiplication $P \times_A Q$ of A-torsors.

- 2.0.2. Gerbs. Let A be a commutative group bundle over X. An A-gerb $\mathfrak{X} \to X$ is a torsor for the group stack B(A). So, locally $\mathfrak{X} \cong B(A)$ and \mathfrak{X} is again a stack over X.
- 2.0.3. Lemma. A-gerbs \mathfrak{X}/X are the same as $Tors_A$ -torsors.

Proof. This is just the correspondence of spaces and their sheaves of sections – an A-gerb \mathfrak{X} is a torsor for B(A), so its sheaf of sections $\underline{\mathfrak{X}}$ is a torsor for the sheaf of groups $X/A = \mathcal{T}ors(A)$.

2.0.4. Gerbes and Azumaya algebras. From now on we only consider the group $A = G_m$ and "gerb" means a G_m -gerb.

Lemma. (a) The category of coherent sheaves on a gerb \mathfrak{A} over X is \mathbb{Z} -graded

$$Coh(\mathfrak{A}) = \bigoplus_{n \in \mathbb{Z}} Coh(\mathfrak{A})_n.$$

- (b) Any Azumaya algebra A/X defines a gerb \mathfrak{A}/X . Its sheaf of sections is the sheaf of categories $\underline{\mathfrak{A}}(U)$ of splitting bundles of the Azumaya algebra A on U.
- *Proof.* (a) We know that $Coh(X/G_m) = Coh_{G_m}(X)$, since G_m acts trivially on X this is just a sum of copies $Coh(X)_n$ of the category Coh(X), where G_m acts by z^n on the $n\theta$ power. Since a gerb is locally isomorphic to the classifying stack $B(G_m)$, $Coh(\mathfrak{X})$ inherits the grading.
- (b) $\underline{\mathfrak{A}}(U)$ torsor for the group category $\mathcal{T}ors_{G_m}$ because any two splittings on the same U differ by tensoring with a line bundle.
- 2.0.5. Fake abelianization of Azumaya algebras. For an Azumaya algebra A over X, the category of coherent A-modules has a commutative description where all subtlety is stored into the geometry of the associated stack $\mathfrak A$:

Lemma. $Coh(A) \cong Coh(\mathfrak{A})_1$.

2.0.6. Grouplike gerbs and Azumaya algebras. Let us say that for an A-gerb \mathfrak{G} over a group G, a compatibility structure for the group structure $G \times G \xrightarrow{m} G \xleftarrow{i} 1_G$ is a pair of an isomorphism of A-gerbs on $G \times G$

$$\iota: m^*\mathfrak{G} \cong \mathfrak{G} \boxtimes_{A} \mathfrak{G}$$

and a trivialization $i: \mathfrak{G}|_{1_G} \xrightarrow{\cong} B(A)$, satisfying certain consistency properties.

4 MANU CHAO

Lemma. For an A-gerb $\mathfrak G$ over a group G, a compatibility structure makes $\mathfrak G$ into a group stack. It is an extension of group stacks

$$0 \to B(A) \to \mathfrak{G} \to G \to 0.$$

Proof. The inclusion $B(A) \to \mathfrak{G}$ is the trivialization $i : \mathfrak{G}|_{1_G} \stackrel{\cong}{\to} B(A)$. The map $\mathfrak{G} \to G$ is the quotient map $\mathfrak{G} \to \mathfrak{G}/B(A) \cong G$ for the B(A)-torsor \mathfrak{G} over G.

- 3. Geometric Langlands conjecture
- 4. Geometric Langlands conjecture for D-modules in positive characteristic