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1. Global Unramified Geometric Langlands conjecture

1.1. Geometric Langlands conjectures. These are algebro-geometric expectations
with roots in Number Theory. Here global means that conjectures concern a projec-
tive curve over a closed field while unramified means that we consider local systems which
are defined on the whole curve, i.e., have no singularities. The conjectures have two
main forms – (a) categorical equivalence, and (b) existence of Hecke eigensheaves.

1.1.1. The data. Let C be a smooth projective curve over a closed field k. Choose a
reductive algebraic k-group G, it turns out that such groups come in Langlands dual pairs
G, Ǧ. We will attach to each of these groups one moduli of objects on C and a category
of sheaves on this moduli. We will be interested in the case k = C which allows the
differential geometric treatment of Kapustin and Witten. For the general k the story is
technically different as it uses the language of l-adic cohomology.

First, let BunG(C) be the moduli stack of G-torsors (principal G-bundles) over C. If
G = GLn then G-torsors are equivalent to rank n vector bundles, so BunG(C) is the same
as the moduli Vecn(C) of such vector bundles on C.

Next, the moduli stack LSG(C) of G-local systems on C classifies (if the characteristic of
k is zero), pairs of a G-torsor P and a connection ∇ on P (by that we mean a G-invariant
connection).(1) If k = C we can think of G-local systems as group maps π1(C)→ G. We
will attach this moduli to Ǧ, so we get LSǦ(C).

1.1.2. Conjectures. The Geometric Langlands conjecture of Beilinson and Drinfeld says
that Ǧ-local systems on C can be encoded as D-modules on the stack moduli BunG(C).
We denote by DX the sheaf of algebraic differential operators on X.

In the deeper categorical form, the moduli LSǦ(C) and BunG(C) are related by a kind of
a Fourier transform exchanging coherent sheaves on LSǦ(C) and D-modules on BunG.
The fact that the duality also exchanges G and its Langlands dual Ǧ is alike the fact that
the Fourier transform exchanges functions on dual vector spaces.

1.1.3. Conjecture. (a) There is a canonical equivalence of triangulated categories

L : Db[Coh(LSǦ(C))] ∼= Db[mod(DBunG(C))].

We call L the Langlands transform.

(b) For any Ǧ-local system E on the curve C, there is a unique Hecke eigen-D-module Ě
on BunG(C), with eigenvalue E .

1For arbitrary k there is still a notion of a G-local system over C, these are the l-adic local systems
in etale topology. In this case we use the Ql-form GQl

of G, so for G = GLn a G-local system means
a ordinary rank n l-adic local system. For a general G a G-local system L is then viewed in Tannakian
terms as a family of ordinary l-adic local systems LV indexed by representations V of G

Ql
, i.e., LV

plays the role of associated bundle for a GQl
-torsor L.
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(c) In the setting when both conjectures make sense, they are related by: Ě is the
Langlands transform L(OE) of the structure sheaf of the point E in LSǦ(C).

1.1.4. Remarks. (0) Some of this is imprecise, for instance a question of the correct cate-
gory on LSǦ(C).

(1) Part (b) is the original Geometric Langlands conjecture of Drinfeld which is a direct
geometrization of a Langlands conjecture in Number Theory. It makes sense over any
closed field k since it involves only the stack BunG(C), however the original interest was
in the case when k is the algebraic closure over a finite field since this is relevant for
Number Theory. For G = GLn and k = C this conjecture has been proved by Gaitsgory.

(2) Claim (a) is a lift of (b) to a categorical statement As we will see, if we know or believe
(a) then the claim (b) roughly says that the Langlands transform exchanges tensoring of
coherent sheaves on LSǦ(C) and convolution of D-modules on BunG(C). (Recall that the
usual Fourier transform exchanges multiplication and convolution of functions.)

However, (a) contains much more information since it deals with a finer structure of a
category. It is also “more reasonable” in the sense that it involves fewer details. (a) has
not been predicted from Number Theory but should contain information of interest for
Number Theory. (For instance the isomorphism of K-groups of categories?)

(3) The more general ramified version deals with local systems on a punctured curve, i.e.,
local systems on C with singularities at finitely many points. For this generalization one
modifies BunG(C) by adding parabolic structures at singular points. Not much is known
in mathematical literature, though there are some results for P1. Recent contribution
from physics (Gukov-Witten) seems significant.

1.1.5. Dependence on the field k. In the case k = C that we will be interested in all these
spaces are complex manifolds (stacks) and physicists find that they are a part of a larger
differential geometric picture which lives in real manifolds.

For general k, while the stack BunG(C) is defined over k, the moduli LSǦ(C) of l-adic local
systems is a stack over Ql. Also, D-modules on BunG(C) have to be replaced by perverse
l-adic sheaves on BunG(C). So, the conjectured equivalence concerns two triangulated
categories which are Ql-linear.

1.1.6. Of course, we need to explain the meaning of Hecke eigen-D-modules which we
call simply Hecke eigensheaves. Contrary to history, we will start by “guessing” (b) from
the formal structure of (a), and then we will make these ideas precise by going through the
abelian case G = Gm which is a reformulation of standard facts about Jacobian varieties
(this is of course the historical development from abelian to nonabelian).
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1.2. The categorical meaning of Hecke operators. Hecke eigensheaf property turns
out to be quite reasonable – just the Fourier transform of the most obvious description of
points in space, i.e., of the characterization of structure sheaves of points.

1.2.1. Eigenvalue property of points. Conjecture (a), says that we have two equivalent
settings BunG(C) and LSǦ(C). A Ǧ-local system E is a point of LSǦ(C) and since we
know something about Db[Coh(LSǦ(C)] the question arises how does one describe a point
a of a scheme X in terms of the category Db[Coh(X)]? The simplest answer is that the
structure sheaf of a point behaves simple under tensoring with a vector bundle V – we
get a multiple of Oa with multiplicity given by the fiber of V at a :

V ⊗OX
Oa
∼= Va ⊗k Oa.

We can say that Oa is a common eigensheaf for operators V⊗OX
−, where V goes through

all vector bundles on X. Notice that our “operators” are really functors and the corre-
sponding “eigenvalue” is a functor from vector bundles to vector spaces – the fiber of at
a.

1.2.2. Tautological vector bundles on LSǦ(C). To see what the above philosophy means
for a point E in LSǦ(C) we need to know some vector bundles on LSǦ(C). Over
LSǦ(C)×C there is a tautological Ǧ-torsor P, for any local system E = (P,∇) the
restriction of P to E×C is the underlying Ǧ-torsor P . Of course, P is really the tautolog-
ical family of local systems over LSǦ(C) and it carries a connection in the direction of C,
i.e., a relative connection for the projection to LSǦ(C).

Now, any representation V of Ǧ defines a vector bundle Ṽ
def
= P×ǦV on LSǦ(C)×C. In

particular, any point a ∈ C defines a vector bundle Va on LSǦ(C) – the restriction of Ṽ

to LSǦ(C)×a. Therefore, OE is an eigenvector for the tensoring operatorsWa,V
def
= Va⊗−

:

Va⊗OLS
Ǧ

(C)
OE
∼= (Va)E⊗k OE ,

and the eigenvalue for the tensoring operator Wa,V is the fiber (a vector space)

(Va)E = Pa×Ǧ V = Ea×Ǧ V,

where Ea = Pa is the fiber of the local system E at a ∈ C.

Remarks. (1) Instead of using one point of C at a time, one could also write a single
equation over LSǦ(C)×C

Ṽ ⊗OLS
Ǧ

(C)×C
OE×C

∼= Ṽ |E×C ⊗OC
OE×C

for each V inRep(Ǧ). Here C is the parameter space for operators and the eigenvalue is
therefore a vector bundle on C (actually a local system!)

(Ṽ )E×C = E×Ǧ V.
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(2) Here we use of all representations V of Ǧ, i.e., all conversions of the Ǧ-local system
E into a local system of vector spaces, in order to be able to tensor. So, the meaning
should really be (in a correct categorical framework)

P ×Ǧ OE×C
∼= E ×Ǧ OE×C ,

so the eigenvalue is really the local system E itself.

1.2.3. Algebra of tensoring operators. Notice that at each point a ∈ C our operators form
a copy of the tensor category (Rep(Ǧ),⊗k) since clearly

(1) Wa,U⊕V =Wa,U⊕Wa,V and
(2) Wa,U⊗V =Wa,U◦Wa,V .

Observation (1) implies that it is sufficient to describe these operators for irreducible V ’s.

1.2.4. Langlands transform as a Fourier transform. Since we are dealing here with “dual”
groups, we may hope that the transform L is somewhat like the Fourier transform. The
usual F-transform exchanges multiplication and convolution of functions. So, one may
hope that the Langlands transform will exchange tensoring which is alike multiplication (it
is done pointwise!), with something like convolution. On the coherent side the structure
sheaf OE is an eigenvector of tensoring operators Va⊗O− indexed by all V ∈ Rep(Ǧ)
and points a ∈ C, and the eigenvalue is E . Then on the D-module side LE should be
characterized as a common eigenvector with eigenvalue E for a family of operators that
are (roughly) convolutions with Langlands transforms of tautological bundles. These new
operators will be called Hecke operators Ha(V ) (once they are defined), they will also be
parameterized by the same data V, a.

Next, we check that all of this really works when G = Gm and we use this case to guess
what Hecke operators should be for general G.

1.3. Geometric Langlands conjectures for line bundles. Here, we notice that for
G = Gm Langlands conjectures amount to classical facts about the Jacobian, We start by
noticing that in this case the relevant moduli are classical objects. Then the categorical
equivalence is proclaimed to be a version of the Fourier-Mukai transform based on the
self-duality of the Jacobian.

Now, we come to our real subject – the meaning of Hecke operators for G = Gm. As
the passage from a curve to its Jacobian is a form of linearization where a geometric
object is encoded in an abelian group, the same is true for a passage from a local system
E on C to the corresponding D-module Ě on the Jacobian (actually just a local system
on the Jacobian). So, the characterizing property for Ě is its compatibility with the
group structure on the Jacobian. It turns out that we can reduce this property to its
minimal formulation as compatibility of Ě with the modification operators on line bundles
Ha : L7→L(a) defined at each point a ∈ C. The upshot is that the characterizing property
can be stated as an eigenvector property for the operators Ta, a ∈ C, which act on local
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systems on BunG(C) by the pull-backs with respect to the modification operators Ha.

These are the Hecke operators Ta
def
= H∗

a .

1.3.1. Moduli of line bundles. A torsor P for G = Gm is the same as a line bundle L.
Here P is obtained from L by removing the zero section and L = P×Gm

k. The standard
version of the moduli of line bundles is the Jacobian JC which is an algebraic ind-group (its
connected components are abelian varieties). However, each Gm-torsor (or line bundle)
on C has automorphism group Gm and therefore the stack moduli BunGm

(C) is slightly
more subtle:

BunGm
(C) ∼= JC/Gm = JC×

pt

Gm
,

for the trivial action of Gm on JC .

Let me mention some of the familiar aspects of Jacobians:

(1) The connected components Jn
C of the Jacobian are indexed by the degree n ∈ Z

of the line bundle.
(2) (Abel-Jacobi maps.) For n ≥ 0 there is a canonical map Cn → Jn

C by
(a1, ..., an)7→ O(a1 + · · · + an). It factors through the nth symmetric power of

the curve C(n) def
= (Cn)//Sn (the categorical quotient), which is the moduli of

effective divisors of degree n. This yields the Abel-Jacobi maps AJn :

Cn qn
−→ C(n) AJn

−−→ Jn
C , AJn(D) = O(D).

(3) (Abelian group.) Jacobian is the commutative group ind-scheme freely generated
by the algebraic variety C. What this means is that there is a canonical map
AJ1 : C → J1

C and it is universal among all maps of C into commutative ind-
algebraic groups, i.e., any such map C → A factors uniquely through JC .(2)

(4) (Self-duality.)(3) J0
C is an abelian variety which is canonically self-dual.

1.3.2. Moduli of invertible local systems. Local systems for Ǧ = Gm are the same as
invertible local systems, so we denote the moduli by ILS(C) ∼= LSGm

(C). There is a
forgetful map

ILS(C)
F
−→ JC ,

since an invertible local system is a pair E = (L,∇) of a line bundle L and a connection ∇

on L, The map is really ILS(C)
F
−→ J0

C because a line bundle that carries a connection
necessary has degree 0, The fiber of this forgetful map at the trivial line bundle , i.e., all
connections on the trivial line bundle is natural identified with the vector space Γ(C, ωC)
of global 1-forms. More generally, the connections on any line bundle L ∈ J 0

C are a torsor

2The correspondence C 7→JC is the origin of Grothendieck’s idea of motives – one should associate to
algebraic varieties commutative ind-groups which contain most of the information about the variety by
Torelli theorems.

3This is one many formulations of Class Field Theory.
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for Γ(C, ΩC) since any two connections differ by a 1-form. So ILS(C) is a torsor for the
vector bundle J0

C×Γ(C, ωC) over J0
C .

The (co)tangent bundles over JC are trivial vector bundles since JC is a group, So
TJC

∼= JC×H1(C,O) because the tangent space at 1 is the linearization H1(C,O) of
JC = H1(C, Gm). By Serre duality T ∗JC = JC×Γ(C, ΩC). Therefore, ILS(C)→ J0

C is a
torsor for T ∗J0

C .

Notice that adding a connection ∇ to a line bundle L reduces the the automorphism
group Gm of L.

1.3.3. Categorical Geometric Langlands conjecture for Gm. The derived category of co-
herent sheaves on BunG(C) = JC/Gm is the derived category of Gm-equivariant, i.e.,
graded, coherent sheaves on the Jacobian :

Db[Coh(BunGm
(C))] = Db[CohGm

(JC)].

On the other hand, we have D-modules on LSGm
(C) = ILS(C), which is a torsor for

T ∗J0
C .

So, the categorical part of the Langlands conjecture for Gm says that

Theorem. There is canonical equivalence

Db[CohGm
(JC)] ∼= Db[mod(DILS(C))].

“ Proof. ” The underlying geometric content here is that the abelian variety JC is
canonically self-dual. Then the equivalence above can be see to be a “twisted” version
of the Fourier-Mukai equivalences. In local systems the twist comes from replacing the
group T ∗J0

C by its torsor ILS. The corresponding twist on the side of G-bundles is given
by replacing coherent sheaves with D-modules. This twisted version is then just a matter
of standard group theory.

Historically, Fourier-Mukai equivalence for dual abelian varieties has been a prototype
for Laumon’s Fourier transform of 1-motives, and the equivalence above is essentially a
consequence of Laumon’s point of view. The best treatment is in [Polishchuk-Rothstein].

1.3.4. Correspondence of invertible local systems on the curve and on its Jacobian. For
G = Gm, the geometric Langlands correspondence should assign to each invertible local
system E on C a D-module LE on BunGm

(C) = JC×pt/Gm which is an “eigensheaf for
Hecke operators”. It will turn out that in this case D-module LE is again an invertible
local system on JC and the whole picture – a correspondence of invertible local systems
on C and on JC – is embedded in the standard theory of Jacobians.

To find the mechanism of the correspondence we start with the case k = C where we can
use the complex (i.e., transcendental) methods. Then we will see a geometric proofs valid
for general k.
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1.3.5. Characterization of the correspondence E 7→Ě . Over C it is well known that π1(J
n
C)

is H1(C, Z), i.e., the maximal abelian quotient of π1(C, Z). Invertible local systems are
just the one dimensional representations of fundamental groups, so for each n ∈ Z there
is a bijection of invertible local systems E on C and invertible local systems on Jn

C . For
n = 0 we denote it E 7→L0

E .

The remaining discrepancy is that there are more invertible local systems on JC then
on C simply because of the disconnectedness of JC . From this point of view, a natural
correspondence E 7→LE would follow from any canonical extension procedure L0 7→L of
invertible local systems L0 from J0

C to JC .

Question. What should be a characterizing property of such procedure?

The basic property of the Jacobian is that (i) it is an ind-algebraic group, (ii) which is
freely generated by C. So,

• From the point of view of (i), the characterizing property of the extension should
be the compatibility with the group structure of JC .
• (ii) Moreover, from the point of view of (ii) we can play with the formulation of

this property by sometimes replacing JC with just C.

The first approach is simpler but is is the second one that will generalize into the notion
of Hecke operators for all groups G.

1.3.6. Compatibility with the group structure. We want to extend any invertible local
system L0 on J0

C to a local system L on JC , which is compatible with the multiplication
m on JC . However, this actually requires that any invertible local system on J 0

C be
compatible with the multiplication on J0

C . Fortunately, this is true in the following sense.
For the multiplication m0 : J0

C×J0
C → J0

C map one has a natural isomorphism

(m0)∗L0 ∼= L0
�L0,

of local systems on J0
C×J0

C . In terms of fibers of the local system at points L.M, L⊗M ∈
J0

C this means a family of isomorphisms (continuous in L, M)

L0
L⊗M

∼= L0
L⊗L

0
M .

For a proof recall that J0
C is a quotient of a vector space by a lattice H0(C, Z) and therefore

the map of fundamental groups induced by m0 is the addition in H1(C, Z). This gives the
required isomorphism of local systems on J0

C×J0
C .

Now it is clear what the characterization should be:

• (i) The canonical extension L of an invertible local system on J 0
C to JC should

have the property

m∗L ∼= L�L.
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• (ii) As C generates JC , this is equivalent to an isomorphism on C×JC

(C×JC
m
−→ JC)∗L ∼= L|C�L.

In (ii) we think of C as a subvariety of J1
C via the map

AJ1 : C↪→J1
C , AJ1(a) = O(a), a ∈ C.

So, (ii) is a family of isomorphisms of fibers

LL(a)
∼= Ea⊗kLL, L ∈ JC , a ∈ C.

1.3.7. Hecke property. This is just the explicit form of the above characterization
(ii). We start with an invertible local system E on C and consider the corresponding
invertible local system L0

E on J0
C . The canonical embedding AJ1 : C↪→J1

C induces

π1(C)ab
∼=
−→π1(J

1
C). Therefore, if we use a choice of some L ∈ J1

C to construct an

isomorphism J0
C

∼=
−→J1

C , M 7→ M⊗L, we get a noncanonical embedding C↪→J 0
C which

again induces π1(C)ab
∼=
−→π1(J

0
C). This means that the corresponding restriction of L0

E to
C is isomorphic to E .

So the “simplified” form (ii) of the compatibility condition says

(C×JC
m
−→ JC)∗L ∼= E�L, i.e., LL(a)

∼= Ea⊗LL, L ∈ JC , a ∈ C.

We will restate this in the following terminology :

(1) Each point a ∈ C defines a Hecke modification map Ha : JC → JC , L 7→L(a), hence
a Hecke operator Ta = H∗

a on local systems on JC , which is just the pull-back of
local systems under Ha.

(2) We require the local system L corresponding to E to be an eigenvector for each of
the Hecke operators Ha, with eigenvalue Ea :

H∗
aL
∼= Ea⊗kL, a ∈ C.

(3) More precisely, pointwise Hecke modifications fit into a global Hecke modification
map H : C×JC → JC , and Hecke operator H∗ that takes local systems on JC to
local systems on C×JC . We require, L to be an eigenvector for H∗ with eigenvalue
E :

H∗L ∼= E�kL.

1.3.8. Geometric (Unramified) Class Field Theory of Deligne. This is the above corre-
spondence E 7→LE = L. We will now give a proof over any closed field k though our
thinking so far has been transcendental and therefore only made sense for k = C.

The importance of general k is for the relation with Number Theory.(4) A technical in-
gredient when we deal with general k is that D-modules do not quite work as well, so it

4Actually Number theory would prefer a setting more general then a field!
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is standard to use a different notion of local systems on an algebraic variety over a closed
field – the l-adic local systems in etale topology.(5)

The algebraic construction is given by properties of Abel-Jacobi maps:

Theorem. [Deligne] Let C be a connected smooth projective curve over a closed field k.
For each invertible local system E on C there is a unique invertible local system L on JC

which is a Hecke eigensheaf with eigenvalue E , i.e.,

(JC
Ha:L7→L(a)
−−−−−−→ JC)∗ L ∼= Ea⊗ L, a ∈ C.

More precisely, one requires that the above isomorphisms are continuous in a ∈ C, i.e.,
that H∗L ∼= E�L.

Proof. In one direction, E is the pull-back of L under the embedding AJ 1 : C↪→J1
C .

In the opposite direction one constructs from an invertible local system E on C, a family
of invertible local systems En on Jn

C by

(1) On each Cn one has invertible local system E�n = E�· · ·�E .
(2) Its “Sn-symmetric part” is an invertible local system E (n) on C(n) constructed by(6)

E (n) def
= [(qn)∗E

�n]Sn .

(3) Now, for n >> 0 (say n ≥ 2g−2), map AJn is by Abel-Jacobi theorem a projective
bundle. Since π1(P

N) = 0, this implies that E (n) is a pull-back of a local system
on Jn

C which we call Ln
E .

(4) The family of local systems Ln
E constructed above have the compatibility with

multiplication property

(Jp
C×Jq

C
m
−→ Jp+q

C )∗Lp+q
E
∼= Lp

E�L
q
E

and this implies that this family extends uniquely to a local system LE on all of
JC which is compatible with multiplication.

(5) From construction, for n >> 0 we have

Ln+1
L(a)

∼= Ln
L(a) ⊗k Ea, L ∈ Jn

C , a ∈ C.

This implies that the whole LE has this property.

5One can also use D-modules in positive characteristic. The known version of this idea yields a
seemingly correct, but more shallow, Langlands correspondence [Bezrukavnikov-Braverman].

6The crucial point of this construction is that the symmetric part of E�n is again an invertible local
system. If E is a local system of rank r > 1 then E (n) is a sheaf which is only generically a local system –
off the diagonal divisor. However, this is still the basis of Drinfeld’s conjectural construction of unramified
automorphic sheaves for GL2. This approach was developed by Laumon into a conjectural construction
for all GL(r) and Gaitsgory verified Laumon’s conjecture when k = C.
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From this construction of LE the composition E 7→LE 7→LE |C is identity. To see that the
other composition L7→ E = L|C 7→ LE is also identity, one observes that the Hecke property
of L implies that for points ai ∈ C

LO(a1+···+an)
∼= Ea1⊗· · ·⊗Ean

⊗LO = E [n]
(a1,...,an)⊗LO

∼= E (n)
a1+···+an

⊗LO,

and for n >> 0 this is the definition of

(Ln
E)O(a1+···+an) ⊗k LO.

So, for n >> 0 we get natural isomorphisms L ∼= LE on Jn
C , and then the Hecke property

for both L and LE extends this isomorphism to all of JC .

1.3.9. Geometric Langlands correspondence for Gm. To see the Deligne theorem as a case
of the Langlands correspondence formalism, let us match the above operators Ta with
the expected parameterization of Hecke operators. As the tensoring operators Wa,V on
LSǦ(C) are parameterized by pairs of a ∈ C, V ∈ Rep(Ǧ), the correct Hecke operators
should have the same parameterization Ta,V a ∈ C, V ∈ Rep(Ǧ). Moreover, one should
have

(1) Ta,U⊕V = Ta,U⊕Ta,V and
(2) Ta,U⊗V = Ta,U◦Ta,V ,

since this is true for tensoring operators. Observation (1) implies that it is sufficient to
describe these operators for irreducible V ’s.

For G = Gm, Irr(G) = {χn; n ∈ Z} where χn(z) = zn. Since χp+q = χp⊗χq, by
observation (2) we only need to know Ta,χ1 and this is the above operator Ta the pull
back of local systems under the map Ha(L) = L(a), L ∈ JC . The more general Hecke
operators do not give anything new since Ta,χn

= (Ta,χ1
)n = (Ta)

n, this is the pull back

under the modification map Hn·a(L)
def
= L(n·a).

1.4. Hecke modifications and the loop Grassmannian. Let us summarize our ex-
pectations for Hecke operators:

• (i) Hecke operators should have parameterization Ta,V with a ∈ C, V ∈ Rep(Ǧ).
• (ii) They should satisfy

Ta,U⊕V = Ta,U⊕Ta,V and Ta,U⊗V = Ta,U◦Ta,V .

So, the basic operators Ta,V are parameterized by a point a ∈ C and V ∈ Irr(Ǧ).
• (iii) Ta,V should be given by modifications of G-torsors at a which are of “type

V ”.

This subsection examines the modifications of “type V ” at a point a.

We start with the Hecke stack H of all modifications of a G-torsor at a point of the curve.
It is a correspondence over BunG(C), so any substack gives an operator on D-modules on
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BunG(C). More generally, any D-module K on H gives an integral operator with kernel
K:

IK(F)
def
= q?[K ⊗OH

p?−]

where we denote by p, q : HBunG(C) the canonical projections and by p?, q? the operations
of a pull-back or direct image for D-modules. This formalism will produce the Hecke
operators.

The restriction Ha of the Hecke stack to modifications at a fixed point a ∈ C will turn out
to be equivalent to a simpler object, the so called loop Grassmannian Ga which appears in
various parts of mathematics. For instance, from the group-theoretic point of view Ga is
a partial flag variety of a loop group. One can also think of Ga as the simplest nonabelian
cohomology, hence the simplest nonabelian motive. The fact that Hecke operators at each
point a ∈ C should form an “algebra” (actually a tensor category), will correspond to a
certain (obvious) algebraic structure on H and each Ga.

(7)

Loop Grassmannian is the object that we are really interested in. It the next we will see
that it has a stratification by Irr(Ǧ) and this will make sense of “Hecke modifications of
type V ” for V ∈ Irr(Ǧ).

1.4.1. Hecke stack. Any line bundle L has a canonical modification L(a) at a point a,
however this is not true for vector bundles. The effect will be that the Hecke modification
maps L7→L(a) on line bundles will be replaced by Hecke correspondences for general G.

We define the space Ha,P of all modifications of a G-torsor P at a point a as the moduli of

all pairs (Q, ι) of a G-torsor Q and an isomorphism ι : P
∼=
−→Q on C−a, i.e., off the point

a. For instance, for a line bundle L this space Ha,L is a discrete set of all L(n·a), n ∈ Z.

More globally, we define the Hecke moduli H as the moduli of quadruples (P, Q, a, ι) of

two torsors P, Q on C, a point a ∈ C and an identification ι : P
∼=
−→Q off the point a. The

fiber at a given point a ∈ C is the union of all modification spaces at a

Ha
def
= ∪P∈BunG(C) Ha,P .

The map H → BunG(C)2 makes the Hecke stack a correspondence over the space
BunG(C), which for each fixed a ∈ C is a loop Grassmannian bundle over the first copy
of BunG(C).

1.4.2. Locality. Now notice that the construction Ha,P is local in C – since we allow only
modifications at a, the moduli will not change if we replace C by any neighborhood U of
a and P by the restriction to U . Actually, the same is true for the formal neighborhood
â of a in C. Since any P trivializes on â, this reduces understanding of Ha,P to the case
when P is the trivial G-torsor G = C×G.

7Ha is the “action groupoid” of a “group” Ga.



13

1.4.3. Loop Grassmannians. We define the loop Grassmannian (or “affine Grassman-

nian”) for (C, a, Ǧ) as the moduli Ga
def
= Ha,G of all modifications at a of the trivial

torsor G. So, this is the moduli of pairs (Q, ι) where Q is a G-torsor on C and ι is the
trivialization (equivalently, a section) of Q off a.

1.4.4. Cohomological interpretation. First, the moduli of G-torsors BunG(C) on C is the
first nonabelian cohomology H1(C, G). We can think of it as the prototype of a nonabelian
motive – the case G = Gm gives the prototype JC of abelian motives.

The additional information of a trivialization off a means that we are looking at coho-
mology classes supported at a. So, the loop Grassmannian is the first local cohomology at
a

Ga = H1
a(C, G).

(One can also view it as compactly supported cohomology H1
c (â, G) on the local curve

â.) This is therefore a local version of BunG(C), hence the simplest nonabelian motive.
It packs a number of structures which can be summarized by

Theorem. Loop Grassmannian is fascinating.

Question. What is the meaning of the second local cohomology of G at a point of a
surface?

1.4.5. Principle: “Odd cohomologies are hyperkähler ”. The above expression for Ga uses
the cohomology in algebraic geometry. If we work over the complex numbers then we
think of Ga as H1,0

a (C, G). The total De Rham local cohomology then turns out be the
cotangent bundle

H1
DR,a(C, G) ∼= T ∗Ga.

This is the local version (near a) of the moduli T ∗BunG(C) of Higgs pairs.

Recall that the odd abelian De Rham cohomology of a Kaehler manifold is naturally a
hyperkähler manifold [Simpson]. This principle remains true for the first nonabelian coho-
mology. Indeed, the global Higgs bundle moduli T ∗BunG(C) = H1

DR(C, G) is hyperkähler
(result of Hitchin), and the local Higgs moduli T ∗G is also hyperkähler (result of Don-
aldson).

Moreover, the appearance of T ∗BunG(C) in the Beilinson-Drinfeld and Kapustin-Witten
approaches to the geometric Langlands correspondence, can now be stated as study of
H1,0 using the larger context of H1

DR.

Question. The moduli of local systems should be certain Deligne cohomology?

1.4.6. Loop Grassmannian as a uniformization of BunG(C). We will see that for a fixed
G the moduli BunG(C) for all curves C are group quotients of the loop Grassmannian G

for G (and in many ways). For a point a ∈ C denote Gout
def
= Map(C − a, G).
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Lemma. If G is semisimple then

BunG(C) ∼= Gout\G.

Proof. If G is semisimple the canonical map Ga 3 (Q, ι)7→ Q ∈ BunG(C) is surjective
since each torsor trivializes off a point. Then it is clearly a Gout-torsor since it acts simply
transitively on the sections of a torsor over C − a.

(1) (G-bundles on P1.) Let a = 0 ∈ P1 then Gout is G(C[z−1]), hence

BunG(C) ∼= G(C[z−1])\Ga
∼= G(C[z−1])\G(C((z))/G(C[[z]]).

Therefore, the set of isomorphism classes of G-bundles on P1 is the set of G(C[z−1])-orbits
in Ga. We will see that it is indexed the same as the set of G(O)-orbits in Ga, i.e., by
W\X∗(T ) ∼= Irr(Ǧ).

1.4.7. Group theoretic view of the loop Grassmannian. At a point a ∈ C denote by O and
K the functions on the formal neighborhood â and on the punctured formal neighborhood
ã. In terms of any local parameter z at a these are the formal power series O = k[[z]] and
the formal Laurent series K = k((z)). We call G(K) the loop group and G(O) the disc
group at a.

Lemma. Ga
∼= G(K)/G(O).

Proof. Let us enlarge Ga to a moduli G̃a of triples (Q, ι, η) where Q is a G-torsor on
C and ι and η are respectively trivializations of Q off a, i.e., on C − a and near a,
i.e., on â. In other words we consider G-torsors on C glued from trivial torsors on
C − a and on â. These are given by transition functions on the intersection ã, i.e., by

G̃a
∼= Map(ã, G) = G(K). Since G(O) acts simply transitively on all choices of η, we have

G = G̃a/G(O) = G(K)/G(O).

1.4.8. Loop Grassmannian of GLn. We say that a rank n lattice is an O-form of Kn, i.e.,

an O-submodule L⊆Kn such that L⊗OK
∼=
−→ Kn. Equivalently, L has an O-basis which is

a K-basis of Kn.

Lemma. For G = GLn , loop Grassmannian Ga is the moduli of rank n lattices.

Proof. G(K) = GLn(K) acts transitively on K-bases of Kn, hence also on the set of
lattices. However, the stabilizer of the trivial lattice On is clearly GLn(O) = G(O).

We can see this in a more intrinsic way. Ga is the moduli of G-torsors, i.e., rank n vector
bundles L on â with a trivialization on ã. Taking the global sections this means free rank
n O-modules L with the identification L⊗OK ∼= Kn.

1.5. Hecke operators and the stratifications of the loop Grassmannians.
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1.5.1. Loop groups G(K). Let O = k[[z]]⊆K = k((z))⊇O− = k[z−1]. Over the field of
constants k, O can be viewed as a group scheme while O− and K are group-indschemes.
Similarly, the group G(O) can be viewed as the group of k-points of a group scheme GO

over k, while G(K) = GK(k) for a group ind-scheme GK over k.

For computational purposes we choose a Cartan subgroup T⊆G and two opposite
Borel subgroups B = TN and B− = TN−. Denote by X∗(T ) = Hom(T, Gm) and
X∗(T ) = Hom(Gm, T ) the groups of characters and cocharacters of T . As T ∼= Gm

n and
Hom(Gm, Gm) ∼= Z we have X∗(T ) ∼= Zn ∼= X∗(T ). However, the natural relation is

X∗(T )
∼=
−→ HomZ[X∗(T ), Z]. Denote by W the Weyl group NG(T )/T .

Loop group GK (almost) lies in the class of Kac-Moody groups which has structure theory
parallel to the standard structure theory of reductive algebraic groups. More precisely,

GK is close to a Kac-Moody group Ĝ. Let R = Gm be the group of rotations of the
infinitesimal disc Spec(O), so R acts on O⊆K by s(z) = s−1·z, s ∈ R, and therefore also

on GK and GO. Denote by Gaff the semidirect product GKnR, then Ĝ is a certain central

extension 0 −→Gm −→Ĝ −→Gaff −→0. In the end, while the Kac-Moody structure theory

applies literally only to Ĝ, groups GK and Gaff are close enough so that the notions of
Cartan and Borel subgroups, Weyl groups and partial flag varieties make sense for all
three groups.

The role of a Cartan subgroup in GK is played again by the constant Cartan subgroup
T⊆G⊆GK, however a more useful version is a Cartan subgroup Taff = T n R = T×R
in Gaff . A new ingredient for loop groups is that they have three basic kinds of Borel
subgroups: Iwahori subgroup I, negative Iwahori I− and semi-infinite Iwahori J (actually,
these three constructions can be combined to produce more types of Borel subgroups).
Here

I
def
= (GO

z 7→0
−−→ G)−1B, I− def

= (GO−
z 7→∞
−−−→ G)−1B−,

while

J
def
= the connected component of BK = TONK.

1.5.2. Schubert cells in the loop Grassmannian. Loop Grassmannian G is a partial flag
variety of GK and we will consider three kinds of Schubert cells, We start with a map
X∗(T ) → G. First, the cocharacters (i.e., the cocharacters of T ) embedded into the loop
group X∗(T )↪→T (K), by restricting cocharacters to the punctured formal neighborhood of
∞ in Gm. Therefore, the composition X∗(T )↪→T (K)⊆G(K)�G(K)/G(O) = G attaches
to each cocharacter λ a point of the loop Grassmannian that we denote Lλ. Now,

Lemma. (a) X∗(T ) embeds into G,

(b) X∗(T )⊆G is precisely the fixed point set GT = GTaff .

(c) Any λ ∈ X∗(T ) generates orbits

• I·Lλ of finite dimension,
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• I−·Lλ of finite codimension, and
• J ·Lλ which is semi-infinite (i.e. of infinite dimension and codimension).

This gives a parameterizations of orbits of each of the groups I, I−, J by X∗(T ).

(d) GO-orbits in G are parameterized by Weyl group orbits in cocharacters by

λ7→Gλ
def
= G(O)·Lλ = ∪w∈W I·Lwλ.

The analogous claim also holds for GO−-orbits. �

Proof. The parametrization in (c) follows from (a) and (b) since in a partial flag variety
orbits of a Borel are indexed by fixed points of the Cartan. Claim (d) follows from (c)
since W is represented in G⊆GO.

Corollary. GO-orbits and GO−-orbits are in a canonical bijection with Irr(Ǧ).

Proof. The combinatorial characterization of the dual group Ǧ says that Ǧ should contain
a Cartan subgroup ť such that

• there is an identification X∗(T ) ∼= X∗(̌t) and
• this identification identifies the root system ∆ť(Ǧ) with the dual of the root system

∆T (G).

In particular the Weyl groups are canonically identified.

Now, irreducible representations of Ǧ are parameterized by dominant weights

X∗(̌t)dom⊆X∗(̌t). However, X∗(̌t)dom

∼=
−→X∗(̌t)/W since dominant weight form a section

for the W -action. So,

Irr(Ǧ) ↔ X∗(̌t)/W ↔ X∗(T )/W ↔ GO\G.

1.5.3. Irreducible D-modules associated to GO-orbits. We have managed to find a strati-
fication of the loop Grassmannian by Irr(Ǧ). However, recall that the notion of Hecke
operators at a given point of the curve is categorical – these “operators” form a tensor
category which is a copy of Rep(Ǧ) (1.2.3 and the beginning of 1.4). So we really need
to create on G an abelian category equivalent to Rep(Ǧ), so that its irreducible objects
come from GO-orbits.

For this we will have to recall that in the realm of D-modules (or perverse sheaves),
it is well known how to associate an irreducible D-module to an irreducible subvariety.
This will lead to the following abelian category associated to the stratification of G by
GO-orbits:

PGO
(G)

def
= GO-equivariant holonomic D-modules on G.
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Here a D-module M on X is holonomic if it is “of the least possible size”, i.e., for any M
the characteristic variety Ch(M)⊆T ∗X is coisotropic and holonomicity is the requirement
that it be Lagrangian.(8)

For an inclusion of smooth subvarieties Y
j

↪→X, OY is a D-module on Y the direct image
j?OY is then a D-module on X and

Lemma. (a) If Y is connected then j?OY has a unique irreducible submodule LY . Actually,
LY ↪→j?OY is equality on the neighborhood X − ∂Y of Y .

(b) LY only depends on the irreducible subvariety Y .

Examples. (1) If Y is closed then LY = j?OY .

(2) If Y is open then j?OY is just the sheaf theoretic direct image j∗OY and LY is the
submodule OX⊆j?OY .

(3) In general, Y acquires singularities along ∂Y and then LY reflects singularities.

(4) The perverse sheaf of LY is the intersection cohomology complex IC(Y ).

(5) The proof of the lemma is based on the following facts

• (i) holonomic D-modules have finite length,
• (ii) holonomicity is preserved under j∗,
• (iii) j∗OY has no submodules supported on ∂Y .

Here part (ii) is is nontrivial, it uses the notion of b-functions.

1.5.4. Realization of the category Rep(Ǧ) on the loop Grassmannians of G. Abelian cat-
egory PGO

(G) of GO-equivariant holonomic D-modules on G contains irreducible objects

I !∗
λ

def
= LGλ

associated to GO-orbits Gλ in G. The parametrization is really by W -orbits
Wλ in X∗(T ) and we think of it as a parameterization by Irr(Ǧ). Actually,

Theorem. [Drinfeld et al] PGO
(G) is canonically equivalent to Rep(Ǧ).

Remark. (0) So far, this formulation is not quite meaningful since we have not yet defined
Ǧ, we only characterized its isomorphism class (in the proof of theorem 1.5.4). As we will
see, the construction of Ǧ from G is a part of the more precise statement of the theorem.

Proof. The idea of the proof is that a category that is equivalent to a category of rep-
resentations has to have all structures and properties that a category of representations
has. Clearly, Rep(L) comes with tensoring U⊗V , duality U ∗ and with a forgetful functor

8Recall that Gr(DX ) ∼= OT∗X so one can think of DX as a quantization of T ∗X . Then Ch(M) is a
classical limit of M – M has an OX -filtration compatible with with the natural filtration of DX and such
that Gr(M) is a coherent sheaf on T ∗X , then Ch(M) is the support of Gr(M), independent of the choice
of a filtration.
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F : Rep(L)→ Vec, and these satisfy a number of properties. The formalism of Tannakian
duality asserts that any abelian category (R,⊗,−∗,F) with analogous structures which
satisfy certain list of properties, is equivalent to the category of representations of a group
Aut(F) of automorphisms of the functor F (called the fiber functor).

The fiber functor here is the De Rham functor DR
def
= RHomDG

(OG,−) of taking the flat
sections. If we worked with perverse sheaves instead, then the fiber functor would be just
the total cohomology H∗(G,−).

The interesting part is the “tensoring” operation ⊗ on PGO
(G) which we denote by A∗B.

It is constructed as a convolution operation or as a fusion operation.

1.5.5. Convolution. Let A be a subgroup of a finite group B then the space of A-bi-
invariant functions H = CAÃ(B) = C[A\B/A) acquires the structure of an algebra often
called a Hecke algebra. If A = 1 this is the group algebra C[B] with the convolution
operation

f ∗ g
def
= (G×G

m
−→ G)∗(f⊗g), i.e., (f ∗ g)(b) =

∑

(x,y)∈B2 , xy=b

f(x)g(y).

For biinvariant functions there are some uninteresting repetitions from the diagonal A-
action a◦(x, y) = (xa−1, ay), when we eliminate these we still get an associative algebra
structure on H with (f ∗g)(b) = 1

|A|

∑
(x,y)∈B2, xy=b f(x)g(y). To sheafify this, we present

it in a maximally geometric way by the diagram

A\B/A×A\B/A
π
←−A\B ×A B/A

m
−→ A\B/A, f ∗ g = µ∗π

∗(f⊗g);

where ×A denotes the product divided by the above diagonal action of A and m is a
factorization of the multiplication m.

Now think of PG)(G) as the category P(GO\GK/GO) of D-modules (or perverse sheaves)
on the stack GO\GK/GO. Then the formula above interpreted in the world of D-modules
gives an operation on this category

F?G
def
= µ?π

?(F�G).

This straightforward geometrization of Hecke algebra construction provides the “tensor-
ing” operation on PGO

(G) needed above. It turns out that in this approach the commuta-
tivity of the operation is not obvious this prompted Drinfeld to find a second construction
for which commutativity is clear.

1.5.6. Fusion. Here A ∗ B is constructed as a certain degeneration of A⊗B/ For this we

define for any curve C ind-scheme GCn over Cn with fibers G(a1 ,...,an)
def
= H1

{a1,...,an{
(C, G),

i.e., over Cn we have a tautological subscheme Tn of C, i.e., Tn↪→CC̃n, then GCn is the
first relative cohomology group H1

Tn/Cn(C×Cn/Cn, G) with support along Tn.
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Notice that by our definition the fibers of GC2 are G(a,a) = Ga and G(a,b)
∼= Ga×Gb for b 6= a

(multiplicativity of cohomology with respect to the support). None the less,

Lemma. GCn is flat over Cn.

Proof. This of course could not happen for finite dimensional schemes since G2 would be
larger then G. However, here we deal with indschemes and then flatness means “inductive
system of flat subschemes”. This is not difficult to arrange, what happens is that as
a1, .., an approach a, the product of closures of orbits G(a1,λ1)×· · ·Gan,λn

⊆ G(a1 ,...,an)⊆GCn

approaches the closure of a single but larger orbit Ga,λ1+···+λn
⊆ G(a,...,a)⊆GCn . �

Once we choose a formal local parameter za at a on C the loop Grassmannian Ga gets

identified with G
def
= G((z))/G[[z]]. This gives identification PGO

(Ga) with the standard
realization PG[[z]](G). This identification turns out to be independent of the choice of
za because GO-equivariant sheaves on G are automatically equivariant under Aut(â =
Aut(O).(9)

This allows us for any A,B ∈ PGO
(G) to put A⊗B on Ga�Gb = G(a,b) for a 6= b. Now, in

D-modules there is a limiting construction, the nearby cycle functor Ψ.

1.5.7. Such construction also exists in perverse sheaves and in K-theory (called simply
specialization map), but not in the realm of coherent sheaves. The effect of this is that
there is a convolution on Db[CohGO

(P)] but it is not commutative (recall that only the
fusion is manifestly commutative), however it is commutative on the level of K-groups
(because in K-theory the convolution can be identified with fusion). We will use Ψ to
produce from a “constant” family of D-modules A�C2−∆C

B on the part GC2 |C2−∆C
of GC2

that lies above C2 −∆C , a D-module A ∗C B on the restriction pf GC2 to the diagonal :

A ∗C B
def
= Ψ(A�B).

This is a “constant” D-module on GC2 |∆C
∼= GC , so it corresponds to a D-module A ∗ B

on a single G. In other words,

A ∗ B
def
= lim

b→a
A�B.

Remarks. (a) One can think of the limiting process as a collision of perverse sheaves
positioned at points a and b. So, if we think of GO-equivariant irreducible perverse sheaves
on G as “elementary G-particles”, i.e., some kind of particle like objects produced from G,
then we can say that we have produced the group Ǧ and the category of its representations
from the study of collisions of G-particles. This is exactly the logic followed in physics
a wile ago when they made sense of collisions of particles by finding a group U whose
irreducible representations can be made to correspond to particles, so that the procedure
of producing new particles through collisions corresponds to tensoring of representations
of U and decomposing the tensor product into irreducible pieces.

9Intuitively this is so because Aut(O) preserves GO-orbits, but that’s not the whole story.
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(b) The property of multiplicativity of cohomology with respect to the support, Ga,b
∼=

Ga×Gb for b 6= a says that the local cohomologies we find at a and b are independent.
This sounds like locality principle in Quantum Field Theory – measurements at points
separated in spacetime (by the light cone), are independent. Actually, our situation is
the simplest case of of application of locality, the holomorphic two dimensional conformal
field theory.

The mathematical approximation of the the holomorphic two dimensional conformal field
theory is given by the notion of vertex algebras. Then G or rather all GCn together) form
a “geometrized vertex algebra” and one gets standard vertex algebras by taking sections
of certain D-modules on G.

(c) The above construction fusion construction of tensor category uses group G as sheaf
of coefficients in cohomology. In order to state it without G observe that Ga = H1

a(C, G)
can be viewed as cohomology for a pair H1(S, C − a; G) or simply as H1(S, G) for the
space S defined (in homotopy a la Voevodsky) as the quotient of C which contracts C−a
to a point. Space S is independent of C and a. Inside of C2 we consider the union A of
curves C×a and ∆C and we have a pair (C2.C2−A) which maps to C by pr1. Let C → C
be the corresponding quotient of C2 by contracting the fibers of C2−A. The central fiber
of C → C is S while the general fiber is the cowedge S∨S. So, C is a cobordism of S∨S
and S, so it is something like a (co)group structure on S in cobordism category. This is
the structure which produced fusion once we put in the coefficient group G.

Proposition. The fusion construction ∗ coincides with the convolution construction ∗.

Proof. As a bridge between the two constructions one extends the convolution construction
to the C2-setting that houses the fusion construction. Then the main observation is that
the fibers in the convolution map grow slowly (it is a “semismall map”).

1.5.8. Hecke operators. Now we can complete the picture. At each point a ∈ C the
category PGO

(G) is a copy of the category Rep(Ǧ), and we will see that PGO
(G) acts on

the category P(BunG(C)) of D-modules on BunG(C) by convolution/fusion. These are
the Hecke operators.

The simplest point of view is group theoretical, we can think of

P(BunG(C)) = P(Gout\Ga) = PGout
(Ga)

as the category of Gout-equivariant D-modules on Ga. However, the above constructions of
A∗B do not require that A be GO-equivariant (but then the result will not be equivariant
either). So either of these constructions yields an action of the tensor category PGO

(G)
on the category P(G) of all D-modules on G, and this preserves the natural subcategory
PGout

(G)⊆ P(G).
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In terms of the fiber functor F : PGO
(G) → Vec, F(M) = RHomDG

(OG, M), the Hecke
property of F ∈ P(BunG(C)) says that for any A ∈ PGO

(G) one has

F ∗ A ∼= F(A)⊗k F .

It suffices to check this for a collection ofA’s that generate the tensor category PG(GO), for
instance the irreducibles LGλ

. For λ ∈ X∗(̌t) denote by L(λ) the irreducible representation
of Ǧ with extremal weight λ, then the Hecke property of F ∈ P(BunG(C)) reduces to

F ∗ LGλ
∼= L(λ)⊗k F , λ ∈ X∗(T )/W.

One can also us just the irreducibles corresponding to the fundamental weights etc.

1.6. Examples in type A. For G = GLn, take T to be the diagonal Cartan so canon-
ically T ∼= (Gm)n and X∗(T ) ∼= Zn. In terms of the standard basis ei of Kn, the lattice
Lλ corresponding to the cocharacter λ ∈ Zn is then ⊕n

1 z−λiO·ei. The GO-orbit Gλ then
consists of all lattices L which are in the same position to the trivial lattice On as the
lattice Lλ in the sense that the dimensions dim[(L + zp·On)/zpOn], p ∈ Z, are the same
as for Lλ.

In particular, for ωi = (1, ..., 1.0, ..., 0) ∈ Zn − X∗(T ) with i ones, 1 ≤ i ≤ n, we get
G(O)-orbits

Gωi

def
= {lattices L; z·On⊆L⊆On and dim(L/z·On) = i} ∼= Gri(n).

Elementary Hecke modifications for GLn.

1.7. Langlands conjectures in number theory.

1.7.1. Class Field Theory. One could say that the the structure number theory number
theory attempts to describe is that of the totality of all of finite extensions of Q, i.e.,
the fields of algebraic numbers. Equivalently this can be viewed as the description of the
Galois group GalQ of Q, or of the category of finite dimensional representations of GalQ.

The Class Field Theory resolves the abelian part of the problem, i.e., it describes
the largest abelian quotient GalQ

ab or equivalently its irreducible (i.e., one dimensional)
representations.

1.7.2. Langland’s conjectural nonabelian generalization of Class Field Theory. Langlands
conjectures are an attempt to deal with the nonabelian nature of GalQ. From the new
point of view, the n-dimensional representations ρ of GalQ, i.e., group maps GalQ →
GLn(C), correspond to irreducible automorphic representations πρ of GLn(AQ).(10) The
Class Field Theory is indeed the case n = 1 of this prediction.

10It is actually better to allow ρ to be in a larger class of representations of the so called Weil group

WQ which is an amplified version of GalQ and has GalQ as a quotient.
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Here AQ, the ring of adels, is a large topological ring which is associated to Q. It contains
Q and one can think of it as a “locally compact envelope of Q”. This locally compact
setting allows us to use analysis based on the Haar measures on locally compact groups.

Qualification “automorphic” means that the representation πρ appears as a part
of the large representation of GLn(AQ) on functions on its homogeneous space
GLn(Q)\GLn(AQ).

1.7.3. L-functions. One important feature of the correspondence ρ7→πρ should be that it
preserves the basic numerical invariants – the L-functions

Lπρ
(s) = Lρ(s), s ∈ C.

L-functions are maybe the closest among mathematical objects to the Feynman integrals
in physics. The behavior of automorphic L-functions is understood much better. So, if we
would know that the L-functions of Galois representations are also L-functions of some
automorphic representations we would obtain deep information on behavior of L-functions
of Galois representations. For instance, in this way Fermat conjecture has been reduced
to a special case of Langlands conjectures.

1.7.4. Unramified automorphic representations. A particularly nice class of automorphic
representations are the unramified representations. A nice feature of such representations
is that they contain a distinguished vector, i.e., a distinguished function which is an
eigenfunction of certain Hecke operators. Functions of this kind appear in the classical
complex analysis as automorphic functions. From the adelic point of view automorphic
functions are the functions on GLn(Q)\GLn(AQ)/GLn(OQ) where GLn(OQ) is a canonical
maximal compact subgroup of GLn(AQ). So, the unramified automorphic representations
are classified by automorphic functions.

There is also the notion of unramified representations of GalQ . These representations are
determined by what they do on particular elements of GalQ which act as Frobenius auto-
morphisms at points of Spec(Z). The unramified part of the global Langlands conjecture
then says that to each unramified n-dimensional representation ρ of GalQ there corre-
sponds an automorphic function fρ with the eigenvalues of Hecke operators prescribed by
the values of ρ on Frobenius automorphisms.

1.7.5. Langlands duality of reductive groups. However, automorphic functions have clas-
sically been studied for various reductive groups, not only for GLn. Incorporating this
Langlands predicted that for any reductive complex group G, group maps GQ → G(C)
correspond to irreducible automorphic representations of Ǧ(AQ) where Ǧ is another re-
ductive group called the Langlands dual of G. The case of GLn is recovered since for
G = GLn the dual group Ǧ is again isomorphic to GLn.

The duality operation G7→Ǧ is simple on the combinatorial level (i.e., if we only want
to produce an isomorphism class of groups rather then a specific group). Then it is a
combination of duality for root systems and duality for lattices (groups isomorphic to
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some Zn). However, a functorial construction G7→Ǧ is deeper and more recent, the only
known construction (Drinfeld, Ginzburg,...) uses loop groups.

1.7.6. Attraction. If we restrict ourselves to G = GLn, we may expect that the conjectures
have some reasonable explanations. However, the general case suggests that the theory
is much deeper since the relation between G and Ǧ is deep. At this point we see that
we are confronted with a mystery of the universe which chooses to present the same
facts sometimes in the G form and sometimes in the Ǧ form, though to us the two seem
unrelated. It is as if you find yourself in a boat in a sea during a lively storm, and
stimulated by the danger to your existence and a wild beauty of the elements, you are
pushed into a strong, if irrational, conviction of the unity of the sea and the wind which
to the uninitiated may seem to only meet accidentally. And so you ask yourself for a
Fourier transform that exchanges the wind and the sea.

The G–Ǧ phenomena turns out to be of general importance. This has indeed been con-
firmed by appearance of this duality in physics as Montonen-Olive duality generalizing
the classical electro-magnetic duality, and in various other string related phenomena such
as Seiberg-Witten.

1.7.7. Curves over finite fields. The Class Field Theory and the Langlands program go
beyond Q itself and deal with a class of fields F called “global fields of dimension one”.
These fall into the

(1) arithmetic case: all algebraic number fields F ,
(2) geometric case: transcendence degree one extensions F/F of finite fields F.

The first case is much deeper, it includes F = Q and provides a larger setting by studying
all finite extensions of Q at the same time and with the same ideas.

The second case is much simpler since such field is a field of fractions F(C) of a unique
smooth projective algebraic curve C over this finite field F. So, number theoretic objects
have geometric interpretations and one can use the methods of algebraic geometry.

From the point of view of the more traditional arithmetic case, the geometric case is
a “baby case” – the progress is faster and we gain intuition about the arithmetic case.
However, the geometric case is also important as a bridge from number theory to algebraic
geometry and other mathematics. It depicts number theory as the deepest study of
one dimensional geometry with lessons to be applied to algebraic geometry, differential
equations, and more recently to physics.

In the remainder we will now review quickly how the (so called) Geometric Langlands
Conjectures arises from the Langlands program in Number Theory applied to the geomet-
ric case where Q is replaced by the field F(X) of rational functions on a curve X defined
over a finite field.
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1.7.8. “Functions-sheaves” dictionary of Grothendieck. This is the mechanism underlying
Drinfeld’s “geometric” approach to Langlands conjectures, which produces the conjecture
1.1.3(b). (Also a basis of much else.) The idea is that in a number of settings certain
class of sheaves S behaves as a categorification of a certain class S of functions. The two
classes happen to be closely related but while functions form a vector space S, the sheaves
are one categorical step further since they form a category S.

The basic example is the situation considered by Grothendieck. The geometric object is an
algebraic variety X defined over a finite field F with q elements. One considers the derived
category Db

constr(X) of constructible l-adic sheaves in etale topology on X = XF the
corresponding variety over the closure F of F. The Galois group GalF acts on X and the

fixed points X
GalF

are precisely the F-points X(F) of X. A sheaf F ∈ Db
constr(X) is said

to be defined over F if it is equivariant under the action of the Galois group GalF. Since
GalF is generated by the Frobenius automorphism FrF, equivariance structure means just

an isomorphism φ : (FrF)
∗F

∼=
−→F of the Frobenius twisted sheaf and the original sheaf.

Now, any sheaf F defined over F defines a function χF on the set X(F), at a Frobenius
fixed point a ∈ X(F ), φ acts on the stalk Fa since (Fr∗FF)a = FFrF(a) = Fa and

χF (a)
def
= Tr[φ : Fa → Fa].

Moreover, One actually gets a sequence of functions where χn
F is defined on X(Fn) the

points of X over the degree n extension Fn of F, using the trace of φn.

The main thing about this formalism is that it is functorial under maps f : X → Y , i.e.,

χf∗G = (fF)
∗χGandχf!G = (fF)!χF ,

here fF denotes the restriction f : X(F)→ Y (F), f ∗ and (fF)
∗ denote the standard pull-

backs of sheaves and functions, while f! is the proper direct image of sheaves and (fF)!

denotes the direct image of functions by taking sums over fibers.

How much does the system of functions record about F? It determines the class of F in
the Grothendieck group of Db

constr(X) (Chebotarev-Laumon).

While the passage from sheaves on XF to a system of functions on all X(Fn) is straight-
forward, the reverse procedure of geometrization is an art. One starts with an interesting
function f on X(F) and looks for a sheaf F such that χF = f . The main idea is that
if f is built from simpler functions using the functoriality of functions the corresponding
functoriality of sheaves should be used to build F .

1.7.9. Geometrization of the (geometric case of) unramified global Langlands conjectures.
Recall that the unramified Langlands conjecture predicts that to each unramified rep-
resentation ρ of the Galois group GF of a global field F of dimension one there should
correspond an automorphic function fρ on G(F )\G(AF )/G(OF ), i.e., an eigenvector for
number-theoretic Hecke operators, with eigenvalues prescribed by ρ.
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When F is the field of rational functions on a curve X defined over a finite field, Galois
group G(F ) is roughly the fundamental group of the curve X, more precisely it is a limit
of fundamental groups of X−S for finite sets S. So, a representation ρ : GalF Ǧ defines a
local system on X−S for some finite S, i.e., a “local system with singularities” on X. The
unramified representations ρ are the ones for which the local system has no singularities.

On the other hand the space G(F )\G(AF )/G(OF ) turns out to be the set BunG(C)(F )
of F -points of the moduli of F -bundles on C. Now it is clear what should be the “ge-
ometrization”. Instead of constructing a function fρ on BunG(C)(F ) we should construct
a sheaf ρ̌ on the stack BunG(C) such that χρ̌ = fρ. This specific conjecture 1.1.3(b) was
eventually made more transparent by a more abstract conjecture 1.1.3(a).

1.7.10. Geometric Langlands conjecture vs the original Langlands conjectures. The initial
hope was approximately that: (i) sheaves are a much more subtle setting so one will have
to define the problem better, (ii) sheaves are a richer setting with constructions that do
not have obvious meaning for functions.

This has not quite worked out. In positive characteristic, i.e., in the geometric case, the
proof for GLn completed by Lafforgues did not use this geometrization of Langlands con-
jectures (but some other ones which is not called “geometric Langlands”, due to Drinfeld
again).

Another obvious weakness of the geometric conjectures is that they do not even try to
address the arithmetic case of the original conjectures. I believe that this will be corrected
in near future through a (non existing) formalism of “stochastic algebraic geometry”.

However, even in the geometric case the geometric Langlands conjectures reach further
then the standard ones. One example is that they are geometric enough to make sense
for complex curves, and this lead to relations with representation theory of loop groups
and vertex algebras, and to the conjectural S-duality in Quantum Field Theory.

1.8. Appendix. Dual group Ǧ comes with extra features. This subsection is an
amplification of the above results on the loop Grassmannian which has so far not figured
in the Witten approach.

The above construction G7→Ǧ is certainly not the only possible. However, this method
produces Ǧ with some extra structures.

Ginzburg Ǧ has a canonical choice of a Cartan and Borel subgroup Ť⊆B̌⊆Ǧ. On the level of
representations, the representations of ǦZ that we produce from sheaves in PGO

(G)
by means of the fiber functor come with a grading and an action of H∗(G).

(1) Moreover, they come with (two) canonical basis.
(2) From a complex group G one obtains not only a complex group G but actually the

split form ǦZ of Ǧ over integers. Moreover, for any tensor category T with proper-
ties sufficiently alike the properties of the category of modules over a commutative
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ring, the same procedure should give a meaning to Ǧ over T . As proposed by
Drinfeld and Lurie, this in particular applies to the category of spectra.

For simplicity in this subsection we often refer to perverse sheaves rather then the D-
modules because the fiber functor in this case is just the total cohomology. In particular
it associates to the irreducible perverse sheaf LGλ

corresponding to the orbit Gλ (this is the
so called intersection cohomology sheaf IC(Gλ) of the closure of the orbit), it associates
the total intersection cohomology of Gλ.

1.8.1. GLn. The basic features of the construction are easily seen in the case of G = GLn.
The dual group is again GLn but the geometric construction says more precisely that if
our group G is GL(V ) for a complex vector space V , then the dual group Ǧ is naturally
GL(V̌ ) for the complex vector space V̌ = H∗[P(V ), C] which we call the Langlands dual
of the vector space V .(11)

Clearly, the topological (actually motivic) realization of V̌ endows it with a Z-form V̌Z =
H∗[P(V ), Z], so the dual group Ǧ = GL(V̌ ) comes equipped with a split Z-form ǦZ =
GL(V̌Z). Moreover Ǧ has a canonical Cartan subgroup Ť (the stabilizer of the grading on
cohomology), a canonical Borel subgroup B̌ (the stabilizer of the filtration given by the
grading).

It will turn out that all irreducible representations of Ǧ, which we realize as intersec-
tion cohomology of algebraic varieties, have canonical bases given by irreducible com-
plex subvarieties. For instance the fundamental representations of GL(V̌ ) are L(i) =
H∗(Grp(V ), C), i = 1, ..., dimV , and the basis are given by the Schubert varieties in
Grassmannians.

1.8.2. Subgroups Ť⊆B̌⊆Ǧ. For a sheaf M ∈ PGO
(G), group Ǧ acts on the corresponding

vector space obtained from the fiber functor

F(M) = RHomDG
(OG, M) ∼= Ext•DG

(OG, M).

This gives a Z-grading on F(M) and also a compatible action of ExtDG
(OG,OG)

∼=
−→H∗(G, C).

In particular, we have an action of the hyperplane section class in H2 which is clearly
nilpotent. It turns out that the hyperplane section acts a regular nilpotent ě in the Lie al-
gebra ǧ. Moreover, the action of H∗(G, C) can then be explained through an isomorphism
of H∗(G, C) with the enveloping algebra of the centralizer Zǧ(ě)⊆ǧ.

The grading can be viewed as an action of the multiplicative group Gm which turns out
to come from an embedding ρ̌ : GM → Ǧ. On the Lie algebra level this embedding gives a

11Ǧ acts on the fundamental representation which is here realized as the intersection cohomology of
the closure of the orbit Gω1

corresponding to the first fundamental weight. However, Gω1

∼= P(V ) and
since the orbit is compact the intersection cohomology reduces to ordinary cohomology H∗[P(V ), C]. This
action of Ǧ on V̌ identifies it with GL(V̌ ).



27

semisimple element ȟ ∈ ǧ. The compatibility of the action of H∗(G, C) with the grading
now says that ě, ȟ extends to an sl2-triple ě, ȟ, f̌ .

Since a regular nilpotent lies in a unique Borel subalgebra 4̌, Ǧ comes with a distinguished
Borel subgroup B̌. The semisimple part ȟ of an sl2-triple with a regular nilpotent is itself
a regular semisimple element, so it lies in a unique Cartan subalgebra ť. Now, [ȟ, ě] = 2ě
implies that the corresponding subgroup Ť lies in B̌.

1.8.3. Canonical bases of representations. Recall that the closures of GO-orbits Gλ are
special finite dimensional Schubert varieties in G, however to each ν ∈ X∗(T ) we have
also associated a semi-infinite Schubert cell J ·Lν .

Lemma. (a) For M ∈ PGO
(G), there is a canonical decomposition

F(M)
def
= H∗(G, M) ∼= ⊕ν∈X∗(T ) H∗

c (J ·Lν , M) ∼= ⊕ν∈X∗(T ) H∗
J ·Lν

(G, M).

Actually, the summand H∗
c (J ·Lν , M) is the ν-weight space of the Cartan subgroup ť in

the representation F(M) of Ǧ.

(b) In the case when M is an irreducible object, i.e., the intersection cohomology sheaf
IC(Gλ) of some GO-orbit, the irreducible components Irr(Gλ ∩ J ·Lν) of the intersection
of Gλ with the corresponding semi-infinite Schubert cell J ·Lν , give a basis of both the
ν-weight space of the corresponding irreducible representation,

Remarks. (0) The existence of canonical ones were introduced by Lusztig. bases of irre-
ducible representations is a deep discovery of Lusztig, He introduced two pairs of “canoni-
cal” and “semicanonical” bases, the bases above should be related to Lusztig’s semicanon-
ical bases.

(1) Part (a) is often called the geometric Satake isomorphism, because it is a categorifi-
cation of Satake’s result on p-adic groups.

(2) This is essentially the only known case where genuine intersection cohomology has a
basis of algebraic cycles.

(c) Taking the moment map images of the cycles in Irr(Gλ ∩ J ·Lν) Anderson formulated
a charming combinatorics of irreducible representations in terms of certain polytopes.

1.8.4. Arithmetic content. The above construction via Loop Grassmannian actually gives
a topological interpretation of representations of a split reductive algebraic group Ak over
an arbitrary Noetherian commutative ring k of finite global dimension, say Z or Fp. In
this approach, representations of a reductive group Ak are constructed using the geometry
associated to its Langlands dual group G over complex numbers, so we start with G and
work towards Ak = Ǧk. In this way, category of Ǧk-modules has been “localized”, i.e.
realized as a category of sheaves. This gives a new setting for the study of modular
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representations of reductive groups (or even the representations over rings), which uses
complex geometry.

We have no way to introduce exotic coefficients in the realm of D-modules, so we now
switch technologies and on the loop Grassmannian G of a complex reductive group G
we will consider the abelian category PGO

(G, k) of perverse sheaves with coefficients in
modules over a commutative ring k.

Now notice that over a general coefficient ring there are some subtleties which are swept
under a rug for k = C. A character of a Cartan subgroup Ť of the dual group Ǧk, then
λ defines three Ǧk-modules with extremal weight λ

W (λ, k)→ L(λ, k)→ S(λ, k).

Here the Schurr module S(λ, k) is constructed geometrically as the global sections of a
line bundle on the flag variety of Ǧk. The Weyl module W (λ, k) is traditionally introduce
in algebra as a quotient o a Verma module. They are related by S(λ, k) == W (−λ, k)∗.
Finally, L(λ, k) is the image of the canonical map W (λ, k)→S(λ, k). When k is a field
this is the irreducible representation with extremal weight λ. If k also has characteristic
zero then the three constructions coincide.

Theorem. Let k be a commutative ring, noetherian and of finite global dimension.

(a) The abelian category PGO
(G, k) together with the convolution/fusion operation ∗ and

a certain duality operation is a Tannakian category with a fiber functor given by the
global cohomology F = H∗(G,−) : PGO

(G, k) −→k−mod. So it is canonically equivalent
to the category of representations of the group scheme Aut(F).

(b) Group scheme Aut(F) is the split form Ǧk of the dual group Ǧ over k.

(c) For any cocharacter λ of T , the corresponding GO-orbit Gλ

j
↪→G defines three perverse

sheaves(12)

I!(λ, k)
def
=jp

! (kGλ
[dim Gλ]) → I!∗(λ, k)

def
=j!∗(kGλ

[dimGλ]) → I∗(λ, k)
def
=jp

∗(kGλ
[dimGλ]).

(1)

The associated representations of Ǧk, i.e., the cohomologies of these perverse sheaves
are respectively

W (λ, k)→ L(λ, k)→ S(λ, k).

In particular, L(λ, k) is realized as the standard (“middle perversity”) intersection ho-
mology of Gλ with k-coefficients.

Theorem. When k is the ring of integers situation simplifies since I!(λ, Z) = I!∗(λ, Z) and
its dual is I∗(λ, Z).

12Once we are not working over Q there are several versions of intersection cohomology sheaves corre-
sponding to various perversities.
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1.8.5. Example. In the remainder of this section we consider the simplest example of the
convolution and of the coincidence of intersection homology and algebra over a general
commutative ring k.

Let G = PGL(V ) for V = C2, the dual group Ǧ = SL(V̌ ) has a fundamental repre-
sentation L(1) = V̌ = H∗(P(V ), C) and L(1)⊗L(1) is a sum of the trivial and adjoint
representation L(0)⊕ L(2) = C⊕ sl2(C).

Geometrically, two copies of the representations L(1) are realized as constant sheaves
(with a shift [1]) on two copies of G1 = G1 = P(V ) = P1. These P1’s combine in a non-

symmetric way into a P1-bundle X̃ over P1 Along the “zero” section X̃ is the tangent
bundle to P1, and along the “infinite” section it is the cotangent bundle.

Next, X = G2 is obtained by blowing down the “infinite” section (a (−2)-line), to get
X̃ π
−−−→ X. Then for L(n) denoting I!∗(nρ̌, C),

L(1) ∗ L(1) = CP1[1] ∗ CP1 [1] = π∗CX̃ [2] = CX [2]⊕ Cpt = L(2)⊕ L(0).

The map X̃
π

−−−→ X = G2 is a compactification of the Springer resolution T ∗(P1)→ N
of the nilpotent cone N⊆ sl2(C), by adding a line P1 at infinity. The only singularity of
X is at 0 ∈ N and the link of 0 in N is RP3 = S3/Z2. This Z2 is felt in the intersection
homology over a general coefficient ring k. Denote by k2 (the 2-torsion in k) and k/2k (the
2-cotorsion), also the corresponding sheaves supported at the point G0 = {0}⊆ N⊆ G2).
Then I!(2, k) = kX [2] and it is an extension 0→k2→I!(2, k)→I!∗(2, k)→0,, while I∗(2, k)
is also an extension 0→I!∗(2, k)→I∗(2, k)→k/2k→0.

Since X is paved by affine spaces H∗[G, I!(2, k)] ∼= k3, this is the Weyl module W (2, k) =
sl2(k) = {( a b

c −a ) , a, b, c ∈ k}. Similarly, H∗[G, I∗(2, k)] is its dual S(2, k) ∼= W (2, k)∗ ∼=
k3. The canonical map ι : W (2, k)→S(2, k) is the simplest invariant form on sl2(k):

〈x, y〉
def
= tr(xy). Since

〈( a b
c −a ) ,

(
a′ b′

c′ −a′

)
〉 = 2aa′ + bc′ + b′c,

one has ι ( a b
c −a ) = 2aα + bβ + cγ, for a certain basis α, β, γ of S(2, k). So the kernel and

the cokernel of ι are k2 and k/2k.

The fusion version of convolution in our example means the degeneration of the smooth
cubic P1×P1 = G1×G2 in P3 to a singular cubic G2.

1.8.6. Remarks. This motivic point of view also comes with explicit geometric construc-
tions of the group algebra O(Ǧ) and of the positive part U ň of the enveloping algebra U ǧ

of the dual Lie ǧ.
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