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Part 0. Introduction

Text.

e Classical Mechanics: V. 1. Arnold, Mathematical Methods of Classical Mechan-
ics.

e Strings: Eric D’Hooker, String Theory ; http://www.math.ias.edu/QF T /spring/index.html.

e Conformal field theory formalism : Krzysztof Gawedzki, Lectures on Confor-
mal Field Theory; http://www.math.ias.edu/QFT /fall /index.html.
e Additional texts on strings:
— E. Kiritsis, Introduction to Superstring Theory, hep-th/9709062.
— J. Polchinski, String Theory Vols. 1 and 2.

0.1. Topics. The desired topics would be

e (. Classical Mechanics,

Quantum Mechanics,

Quantum Field Theory and Conformal Field Theory,

Strings,

Superstrings,

. Dualities (T-duality, mirror duality),

e Branes

e Calabi-Yau manifolds

e 6. chiral (holomorphic) CFT via vertex algebras,

e 7. Special CFTs (Malikov-Schechtman-Vaintrob and Borisov, Beilinson)

o 0o 0 0 0
AR

However, we will only touch on (0),(1),(3) and (4).

0.2. Usefulness of QFT. Quantum Field Theory is a framework for thinking about the
microscopic structure of the world — the nature and behavior of elementary particles.

Our goal is not the frontiers of physics but the usefulness of the QFT ideas in mathemat-
ics. Importing ideas from QFT to mathematics was the dominant trend in recent past.
However we will only learn the basics of QFT and leave the mathematical applications
for some other opportunity.

During a period of superficial relations between math and physics, physicists thought
deeply about some specific problems and (unobserved) developed a number of ideas that
later proved useful in mathematics.

0.2.1. Some applications to mathematics.

e Low dimensional topology
(1) Witten’s Chern-Simons invariants of, 3d manifolds,
(2) Seiberg-Witten invariants of 4d-manifolds.
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e Algebraic Geometry: Mirror symmetry.
e Representation theory: Vertex algebras.
e Computing: Quantum computing.

0.2.2. Two fundamental methods. There are two basic formalisms used in physics. We
will notice how they propagate from Classical to Quantum Mechanics and Quantum Field
Theory (in the example of strings):

(1) Lagrangian approach
Feynman integrals calculate the probability (b, a) for the system to pass from the
state a to the state b as the the sum of contributions from all possible histories:

probability that x will happen

fall ways z to pass from a to b
(2) Hamiltonian approach
Deformation quantization of algebras of operators

The relation of the two approaches is:

‘Feynman integrals are matriz coefficients of operators. ‘

Mathematics has difficulties with either method, but the situation with (2) has recently
improved due to Kontsevich. In (1) there is no mathematical understanding what the
Feynman integrals should really mean!. The measures are not known, and if they were
the integrals would be likely to diverge, and there are claims that whatever we do our
expectations for the precise meaning of Feynman integrals are self-contradictory. One
way is to imagine that these integrals are only the visible part of some structure finer
then just calculating a number. This is a complete million $ mystery.

0.2.3. The ability of to write down some “functions” via the Lagrangian formalism. Physi-
cists can write down some functions on sets & that are mysterious to mathematicians.
Such § is usually the moduli of something (roughly the set of isomorphism classes of
something), such as: all smooth manifolds of a certain dimension, all elliptic curves, all
Calabi-Yau manifolds of a certain dimension.

The usefulness of such functions:

e They may distinguish different points in S.

For instance, if S is the set of isomorphism classes of knots in R?, if we know
a function Z on S then Z(K;) # Z(K3) implies that the knots K; and K, are
different. This applies to genetics since the basic structure of different DNA is
that they are knotted in a different way.

We call such functions invariants because one often thinks of a knot K in pres-
ence of some additional data (a choice of a projection to a plane), then “invariance”
means that Z does not depend on these auxiliary choice.

1except in some simplest cases: the Gaussian integrals
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e Detecting “dualities”.

For instance on the moduli of Calabi-Yau manifolds of dimension 7, one can
define two invariants Z4 and Zg (called the A and B models). It has been observed
that for each Calabi-Yau M there seems to exist another Calabi-Yau N such
that Z4(M) = Zg(N). Then M and N are said to be mirror partners. This
was spectacular because (i) features about M that are very deep and difficult to
understand are often easy to read off from some simple features of N, (ii) it points
out an undreamed of relation between familiar geometric objects.

e Construction of interesting functions.

In the case of the moduli of elliptic curves physicists produce with ease a wealth

of the so called modular functions have been studied deeply by number theorists.

0.2.4. String duality before string theory: Langlands duality. The Langlands duality be-
tween reductive algebraic groups, G—G, is a deep mystery in representation theory, num-
ber theory and algebraic geometry. With the development of string theory, it appears now
that this is a particular manifestation of a string duality ideas conjectured by physicists.

In the remainder we survey the notes.

0.3. Classical Mechanics. The evolution of a mechanical system is viewed as a path
z : R — C in the space C of all possible configurations (states) of the system. This
path satisfies Newton’s equation of motion a = F'//m, which is a second order differential
equation

T =F(x,1,t).
For instance, if the force is conservative and independent of velocity and time, this becomes
. av
=

for the potential V' (z). In particular, the situation is completely deterministic: if one
knows position and velocity at one moment then there is only one possible evolution.

The two main approaches to the study of Newton’s equation of motion are the Lagrangian
and Hamultonian formulation. These are two geometric ways to think of our differential
equations that uncover more symmetries of the situation.

0.3.1. Lagrangian approach to Classical Mechanics. It is also referred to as the path ap-
proach (since the main heroes are the paths of possible evolutions of the system) or the
Calculus of Variations (for its mathematical underpinning). The main idea is to view
Newton’s equation as a technical manifestation of the principle

physical system evolves so that a certain quantity S[z] is
(locally) minimal among all possible evolutions x.

Here one thinks of the curve z in C in terms of the velocity curve (z,4) in the tangent
bundle TC to the configuration space C. Newton’s differential equation & = F(z, 1, 1),
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i.e., the expression F', is here encoded as a function L on TC xR, called the Lagrangian of
the situation. L(z,,t) is typically(?) the difference of the kinetic and potential energy
L=T-V.

Now the action S|x] is the time integral of the Lagrangian:

S[z] & /tf dt L(z(t), (1), 1).

%

Related mathematical ideas. Critical points of functions are studied in Morse Theory
(global structure of spaces), and Stationary Approzimation Method (oscillating integrals

[ 5@ dx).

0.3.2. Hamiltonian approach to Classical Mechanics. It is also referred to as the Canonical
formalism, her the word “canonical” indicates the relation with the cotangent bundle (as
in “canonical transforms”). We think of it as a next step after the Lagrangian approach
which lives in the tangent bundle 7'C of the configuration space. The idea is that one
replaces T'C with the cotangent bundle 7*C which has an additional geometric structure,
the Poisson structure.

The passage from T'C to T*C is based on the interpretation of the kinetic energy as a metric
gr on C (i.e., on the vector bundle TC), and on the ideas of the Legendre transform (from
functions on 7°C to functions on T*C and the Legendre map (the vertical differential of a
function on T'C is viewed as a map from 7T'C to T*C).

The coordinates on T*C are traditionally denoted (g, p) with ¢ = x the position in C and
p the momentum. One replaces the velocity curve (z,4) in the tangent bundle T'C, by
the momentum curve (g, p) = (z,p) in the cotangent bundle 7*C, using the identification
given by the kinetic energy metric gr. The Lagrangian function L on T'C is replaced by
the Hamiltonian function H on T*C, here H = L(L) is the Legendre transform of L. H
is typically(?) the total energy of the system H =T+ V, i.e., kinetic + potential energy.

Now Poisson structure on T*C associates to the function H a vector field H = {H,—} on
T*C, and Newton’s equation of motion gets reformulated into:

The evolution of any observable f € C*°(T*C) along the momentum curve (Q(t), p(t) is
governed by the Hamiltonian vector field: 4 f = {H, f} = H(f).

So the system is governed by its energy distribution on 7*C. If one applies this to the
coordinate function g¢;, p; we get Hamiltonian equations for the evolution of the momentum
curve

¢=—H, and p=H,.

Related mathematical ideas. The basic geometric feature used in the Hamiltonian ap-
proach to classical mechanics is the Poisson geometry, or more specially the Symplectic
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Geometry . The study of the Hamiltonian equations lead to the theory of Integrable sys-
tems (more formally: “Completely Integrable Systems”). This refers to particularly nice
systems of PDEs that are not interesting for applied mathematicians since very few PDEs
are completely integrable, but are a staple of physics and mathematics since the PDEs in
these worlds are often completely integrable as a reflection of the beautiful organization
of the world with many hidden structures and interrelations.

0.4. Quantum Mechanics.
0.5. Quantum Field Theory and Conformal Field Theory.
0.6. Strings.
0.7. Superstrings.
0.8. Dualities. 7T-duality. Mirror duality.
0.9. Branes. .
"OVERVIEW:
Theory Features Lagrangian formulation Hamiltonian formulation
Classical R-%C it E8Te, L e o=(TC) | RYETC,
Mechanics i =F(x,1,1) S e C®(Mapl[ti, ts],C] H=L(L) € C*(T*C)
Deterministic S= [ L(z(t),2(1),t) dt G=—H,, p=H,, ie.,
d,S=0ie., L, = 2Li af={H, [} = H(f)
Quantum Stochastic Amplitude= path integral Amplitude= matrix coefficient
Mechanics probability Hilbert space is H = L*(C)
= |amplitude|? f€OT*C)gives f: H—H
ie., (b tsla,t;) Z(b,trla,t;) = Z(b,ts]a, t;))
z(ts)=b ihSz —iltr—t:VH
= |Z(b,tslalts))? = [ail du el = (Qyle "t |g,)
| QFT |
Strings Q-Mechanics of A S[z] = Hilbert space H
loop space A(M) = OQW do ftif dt %z + %Z with an action of
Tree level of spacetime M Zs,(b, ts]a, t;)) Heisenberg Lie algebra
(cylinders) (QFT of the = Jssus, ait)—a; DT eholzl i.e., operators Z, with
g-corrections worldsheet Z5,(b, t7]a, t;))
(R-surfaces) surface ) = [y DX [, Dg@ [ Dz ™ | [7,,Z0] = dminlu
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Part I. Classical Mechanics

The classical mechanics is governed by Newton’s first law ma = F' which is mathemati-
cally a second order ordinary differential equation. There are two traditional approaches
which geometrize the study of this Newton equation, the Lagrange and the Hamiltonian
approaches. Both carry over to quantum mechanics, QF T and therefore also to strings.

0. Intro

0.1. Mechanical systems.

0.1.1. Ewolution of a system as a path in the configuration space. Our basic space S will
be an affine space over certain RP (we will usually say that p = 3). Its meaning is that
these are possible positions of one object. The configuration space for n objects (i.e., n-
tuples of points in ) is then C = 8™. The evolution of a system of n points is then a path
in the configuration space, i.e., a map x : R—C from the ¢ime line to the configuration
space. It is an n-tuple x = (21, ..., z,,) with z; mapping R to S.

0.1.2. The nature of physical laws in classical mechanics. The evolution is governed by
the equation of motion, which we also call Newton‘s equation . 1t is of the form

acceleration = force/mass, i.e., = F(x,,t).
Notice that asking for the equation to be of this form is essentially the same as asking
that

If one knows = and £ at g, then z(t) is determined at any time t.

In particular, this encodes the Deterministic Nature of the classical mechanics.

A specific system is now described by a specific force, i.e., a specific differential equation
of the form & = F(z,1,t). The basic example (globally conservative force) is when the
force is a gradient vector field of a potential function

av

d.Tz'

for the potential energy function V' = V(z) on C.

miT; =

0.2. Lagrangian and Hamiltonian formulation. These are two geometric ways to
think of our differential equations that uncover more symmetries of the situation.

The Lagrangian approach is to study the velocity curve & in the tangent bundle 7'C to
the configuration space C, rather then zx itself. The mathematical formalism here is based
on the idea that the system evolves in a way which minimizes certain quantity.
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The Hamiltonian formulation replaces T'C with the cotangent bundle 7*C, and the ve-
locity curve with the momentum curve. The advantage is that any cotangent bundle has
an additional geometric structure, the Poisson structure.

1. Lagrangian approach

1.0.1. Physical Laws as criticality equations. The main idea here is that Newton’s equa-
tion of motion means that the evolution x of the system develops in such a way that a
certain quantity, the action S[x] of , is minimal possible.

In order to construct the action S[x], one starts with a function L on the tangent bundle
TC, called the Lagrangian function (or just “Lagrangian”). This is (typically?) the
difference between the kinetic and potential energy

LY r_v

Then the action S[x] is a time integral of the Lagrangian function L(z, %).

Geometrically, the physical setting is now described by a function L on the tangent bundle
TC. So, the physics happens on TC, and therefore the time evolution is naturally thought
of as a velocity curve (z,2) in TC? So, the reformulation of the Newton equation for
z in terms of the velocity curve, happens to be the criticality equation, of the “action
functional” S[x] on the space of all velocity curves (z, ) in TC (i.e., all curves z in C).

1.0.2. Functionals. A function on a space of functions is called a functional and one
denotes it by S[z| rather then S(z), just to remember that z itself is a function. The
differential of a functional S with respect to a function x is called variation and denoted

08
2,8
0x
1.0.3. Calculus of variations. This is the underlying mathematical machinery, i.e., the
calculation of the criticality equation (the Euler-Lagrange equation)
05
Sx
So, we will calculate the variation % of the action functional given as a time integral of
a Lagrangian function.

0.

Mathematically, this is the differentiation of a function S on an infinite dimensional
manifold, so we review the the differential calculus on such manifolds.

1.1. Manifolds. The basic assumption of mathematical physics is that the configuration
space is a manifold. So we review the basic manifold notions.

2This means that we now replace & by a curve (z,v) in TC and therefore we view the 2" order Newton
equation & = F(z,y,t) in z as a first order system: £ = v, v = F(z,y,t) on TC, i.e., a flow on TC.
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1.1.1. Definition.

1.1.2. Smooth maps.

1.1.3. (Co)tangent spaces.

1.1.4. Vector bundles. Examples: T'M and T*M.
1.1.5. The differential d,F = F'(a).

1.2. Differentiation. The criticality equation for the action functional S[z| asks that
the differential d,S vanishes. Since z varies through an infinite-dimensional manifold of
smooth functions, we need the calculus is infinite dimensional setting.

1.2.1. Normed vector spaces.

1.2.2. Derivatives of maps between normed vector spaces.
1.2.3. Affine spaces over vector spaces.

1.2.4. Comparison of notions of a differential.

1.3. Calculus of Variations on an interval. We are interested in the critical points
of a functional S[z] on the space of all paths z : R — C in a space C. We will call S[z]
the action of the path x. The action functional will be a “time” integral

S[a] % /t " L), #(0), 1) dt.

1

of a function L(x,v,t) which is a (possibly time dependent) function of the position z in
C, and velocity v € T,C. So the Lagrangian L(x,v,t) is a function on TCxR.

Bellow we calculate the criticality equation (Euler-Lagrange equation) of this situation.

We will revisit this in the section III.1 where the maps are allowed to have a higher
dimensional source.

1.3.1. Paths. Precisely, we are interested in the space C'*°(I, M) of smooth paths from
an interval I = [7;,7f], to a Riemannian manifold M. Here we consider the action of the
form

Slz] = /IdT L(z,z,7).

For simplicity we will assume M to be a vector space. The parameter 7 may be time (but
need not). The dot above a letter denotes the differentiation with respect to 7.
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1.3.2. Theorem. The variation (differential) of the action S[z] = [, dr L(z(7),&(7), ),
in the direction of u € T,(C*(I, M)) = C*>(I,M)), is
6S d

S U= [Li(x,2,7) u(t)]s + /IdT [Lo(z,2,7) — %Li(m,jfﬁ)] U

= A(L; Lo — —L;)u.
(wu)-l—/IdT( e 3)U

(b) The boundary term does not appear in the following cases:

e (i) If we consider paths with fixed choices of end points.
e (ii)Ifz isaloop z : S'—M and L = L(z,%) does not depend on time.

(c) When the boundary term does not appear, the EL-equation (criticality equation) is

d
Ly(z,z,7) = ELi(iC,i,T), i, Ly= %Li'
Proof. (a) In general a tangent vector v € T,(C*(I,M)) is the section of TM along
x, i.e., a section of the pullback z*T'M. When M is a vector space this is the same as
u € C®(I,M)). The variation % of S at x and with respect to u, means the differential
05 def d

d
N = = — | e . L y y
5ot (dyS)u 7 le=0 S(x + €u) /1 dr 7 le=o L(z +u, & +1,7)

= / dr Ly(z,%,T)u + Li(z, 2, 7).
I
It remains to use integration by parts for the “dynamic” ingredient .

(b) In the case (i) one has u = 0 on JI. In (ii), everything is periodic with respect to
T — Ty

1.3.3. Pointwise variation %. Now we consider the role of the variation with respect to
the value of x at £. So,let t € I —0I and v € T,y M. We are calculating the variation
of S[xz] when one moves x by a distributional path u = §;(7)-v concentrated at the point
tel, so

0S 0S
5" L = 0(1)0 = (dsS) bi(r)v.
Corollary. The pointwise variation is the integral kernel for the variation operator g—i

0S d

sz(t) Lo = ——LI(2(t),2(2),2), ¢ € (ti,t).

Proof. When t is not an end point the boundary term vanishes and (d;S) 6;(7)v is

/ dr [Ly(x(7),&(7),7) — %Li(ac(T),jc(T),T)] - 0(T)v = [Ly — %L](m(t),a’c(t),t) - .

I
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In terms of component functions and the Einstein summation convention this is

69 ' . d | )
mv = Ly (z(t),2(t),t) v —ELdﬂ(x(t),x(t),t) "

1.3.4. Remarks. (a) The variation with respect to z consists of two parts, due to the
appearance of = as a non-dynamical variable (i.e., the appearance of the field z itself
without derivatives), and as a dynamical variable (i.e., the appearance of the derivative
% of the field). The non-dynamical term of the variation has no time derivative, while
the dynamical term has time derivative with a minus (since the dynamic variable causes
integration by parts).

(b) In general, i.e., when we have to allow the boundary term, EL-equation consists of
two parts: L, = £L; and L;(z(7),2(7),7) = 0 at the ends 7 € 0I = {r;,77}. (For the
first claim we use all u’s supported in (7;,77) and the continuity at the ends. Then for
the second we just vary the values of u at the ends.)

1.3.5. The case S(z) = [ L(z(t)) dt.

t1

1.4. Lagrangian reformulation of Newton‘s equation.

1.4.1. Newton'‘s equation as a flow on TC. Instead of a curve z into C one considers the
corresponding velocity curve (z, %) into the tangent bundle TC. The equation on TC is
of the 1st order, so it gives a flow on 7'C.

1.4.2. Lemma. In the standard case of the conservative force, i.e., m& = —2Y. one can

dzx
indeed reformulate Newton’s equation as the Euler-Lagrange equation.
Proof. The corresponding Lagrangian function L € C*®(TC), is

LT _ v = the difference between the kinetic energy and the potential energy.

ie., L(z(t),(t) = T(¢(t) — V() = tmi(t)? — V((z(t)).

The action is the time integral of the Lagrangian

of [f . K I
St [ de L, 50.0 = [ de mi? - V().
Since, L, = —% and L; = mz, the criticality equation L, = %Li is indeed
&V _ _d s s dV
Tdr —Emm, 1.e., mxr = dr "

1.4.3. Terminology in the presence of a Lagrangian function L on TC.
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1.4.4. Ezxamples of Lagrangians.

e (a) Mass falling to Earth: L = 2

e (b) Harmonic oscillator : L =

mx* — mgh.

1
2
(ma? — max?).

1
2
2. Hamiltonian approach

Also called the “canonical formalism”. Here “canonical” indicates the cotangent bundle
setting (as in “canonical transforms”).

Newton’s equation of motion has last been seen in the Lagrangian formalism as the Euler-
Lagrange (criticality) equation for the velocity curve in the tangent bundle to the con-
figuration space. We will now reformulate Newton’s equation in terms of the momentum
curve in the symplectic variety T7*C (the “phase space”). This “Hamiltonian” equation
says that the evolution of the momentum curve is given by the Hamiltonian vector H field
on T*C, i.e., the vector field associated to the Hamiltonian function H via the symplectic
structure on T*C.

Technically, the passage from T'C to T*C uses the ideas of the Legendre map and the Le-
gendre transform, and a natural metric gr on TC given by the kinetic energy 7'. canonical
metric The function H is the phase space incarnation of the Lagrangian function L on the
tangent bundle T'C, explicitly, H = £(L) is the Legendre transform of L. In the standard
case when L is the difference of the kinetic and potential energy, H is the total energy
H =T +V of the system.

The canonical momentum p is a 7*C version of the momentum ma € T'C. It is defined as
the Legendre map of the Lagrangian L (i.e., the differential of L).

The kinetic energy metric gr is used to move the velocity curve (z(t),Z(t)) in TC to the
momentum curve (g, p(t)) in T*C.

In terms of the coordinates (¢,p) =(position,momentum) on 7*C, the Euler-Lagrange
equation L, = %Li is first reformulated as the Hamiltonian equation for the evolution of
the momentum curve

p=—H, and ¢= H)p,

and this is elegantly written in terms of the Poisson structure on 7*C as
p={H, ¢} & ¢={H,p}.

This gives a uniform formula for the evolution of any observable f € C*(T*C) along the
momentum curve:

f = {H,f} = Hf.

The classical usefulness of the Hamiltonian formulation was the large group of symmetries
(symmetries of Newton’s equation are given by the Galillean group).

2.1. Metrics: linear algebra.
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2.1.1. Inner products and quadratic forms.

Lemma. (a) An inner product (—, —) on a vector space V is the same as a positive non-
degenerate quadratic form ¢q on V.

(b) It gives an isomorphism of vector spaces ¢ : VE)V*, t:v— (v,—), which takes any
orthonormal bases v; to the dual bases p;. Then ¢ = > p?.

2.1.2. Metrics on vector bundles. A metric g on a vector bundle V/X gives an isomor-
phism ¢, : V—=V*.

2.1.3. Metrics on a manifolds. A Riemannian manifold (M, g) is a manifold M with a
metric g on M, i.e., on the vector bundle TM. On a Riemannian manifold (M, g) one
has the notions:

e (a) length of curves,
e (b) distance, i.e., a metric space structure,
e (c) geodesics.

2.2. The passage to the cotangent vector bundle via the kinetic energy metric.
We will think of kinetic energy as a metric on the configuration space C, i.e., on its tangent
bundle TC.

2.2.1. Metric and kinetic energy. The formula for the kinetic energy T = Y m;(4;)?/2
uses the standard metric on the configuration space C = R".

However, one can also think of the quadratic form 7" on the tangent bundle TC as a
natural metric g7 on C

.y def ,. .\ def . ..y def ..
gr(z, &) = (i, &)r = Z mi(d:)?,  gr(z;&,9) = Z m; Ti-Y;-
In this way, mass influences the geometry of the space.

The corresponding isomorphism of vector bundles iy, : TCST*C is given on 1,C by
B (&, =) = (Y midi, —),

for the standard metric on C = R3".

2.2.2. Momentum curve (q,p) : R—T*C. Thisis the image of the velocity curve under the

identification gy : TC—T*C, given by the kinetic energy metric gy on C. So, t—(q(t), p(t))
where ¢(t) = z(t) is the position, and p(t) is the canonical momentum

p(t) = (3 medit), ) = = (alt), i(0), 1)

2.3. Legendre transform.
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2.3.1. The differential of f € C®(V), viewed as a Legendre map f' : V—V*. For a
function f on a manifold M, its differential f’ is a section of T*M. However, if M is

a vector space V we can view it as a “Legendre map” f': V—V*. (For fC*(V), the

differential at a, f'(a) o dof = To(V)=Tf@R is a linear function on T,v = V, hence

f'(a) € V™)

This will generalize the map of vector spaces V5V that comes from an bilinear form
(—,—) on V (think of it quadratic form ¢ on V).

If V is a vector bundle over a manifold M then a function f on V defines a fiberwise

Legendre map 0, f : V—V" is calculated fiber by fiber, i.e., for m € M, this is the partial
derivative in the vertical direction 8 f = f|V;y' : V=V

Ezxamples. Observe that fr—f' is linear in f. The map f' associated to a linear function
f =p € V*isa constant function f’ = p from V to V*. The map associated to a constant
function is ¢ = 0.

Lemma. (a) For a positive definite quadratic form ¢, map ()" : V—V™* is the isomorphism
of vector spaces given by the corresponding inner product (—, —).

(b) If f is a strictly convex function then f’ is a bijection.
Proof. (a) ¢ = > p? for some basis p; of V* and then (u,v) = > p;(u)-p;(v). Now,
(3)(a) = X2 pila)pi = (a, ).

(b) is a generalization of (a). When V' = R it is obvious from the graph.

2.3.2. Legendre transform L of functions on V to functions on V*. Actually, Lf is defined
only when the Legendre map f' : V — V* is a bijection, since the definition uses the
inverse of the Legendre map:

def

(LHP)= (0,p) = f) lo= ()-1p = (v, (f)7P) = F(F)7'P), pEV™

The geometric meaning is in

Lemma. Suppose that f is strictly convex. Then L(f) is defined and (Lf)(p) is the
maximal height of the graph of the linear function p on V' above the graph of the convex
function f.

Proof. The height at v € V is h(v) = (v,p) — f(v). The height has a unique critical
point since 0 = d,h = p — f'(v) means that v = (f')"'p. Actually, since f is strictly
convex, so is the height function h and therefore h has a (unique) maximum.

2.3.3. Lemma. (Properties.) (a) For a positive definite quadratic form ¢ on V,

ch =%
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where the positive definite quadratic form ) on V* is obtained by transporting ¢ to @ by
the isomorphism ¢, : V—=V* defined by g¢.

(b) L(f+c)= Lf—c

(¢) L(cf) (p) = (Lf)(c"p).

(d) L(f+4q) (p) = (Lf)(p—q) for g€ V™.
(e) If f'is a bijection then so is ¢’ for g = Lf.
(f

) L(Lf) = [

Proof. (a) 1y = (2)', or equivalently, ¢,(v) = (v, —) for the corresponding inner product.

2.3.4. Question. For f convex and even, when is the Fourier transform of e=#/2 equal to
—Lf/29
e !

2.4. The canonical momentum. A choice of a Lagrangian function L on T'C defines a
notion of a canonical momentum

def OL

- 0%
So, the canonical momentum p is the variation (change) of the Lagrangian function cor-
responding to an infinitesimal change of velocity — our dynamical variable. (one also says
that % is the momentum conjugate to the position function z.

Formally, the canonical momentum is the Legendre map (see 2.3.1)
TC-5T*C
for the Lagrange function L on TC. (The partial derivative 2&(z, ) is the differential

o
d;(L|T,C) of a function on a vector space T,C, so it is a point of T;C.)

2.4.1. Comparison with the naive momentum (when the potential energy does not depend
on velocity !) In this case the canonical momentum is the change of the kinetic energy
corresponding to an infinitesimal change of velocity:

wdl dT dv 4T  d o .
= = — - — = — = — ACT IR 2= itbiy T
B G @ @ @ 2 M d)/2= (Y midi )

Here the canonical momentum (defined from the Lagrangian), coincides with the naive
momentum up to the interpretation as a covector. Observe also that in this case, the
canonical momentum map TC——T*C, is precisely the isomorphism given by the kinetic
energy metric gr on TC.

Lastly, we will denote by “I" on T;C”, the kinetic energy function transplanted to a func-
tion on T*C by the above isomorphism.

2.5. Hamiltonian reformulation of Newton‘s equation.
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2.5.1. Hamiltonian function H on T*C as the Laplace transform LL of the Lagrangian
function L on TC. In order to define the Hamiltonian function on 7*C by

HY I,

we need to assume that the restrictions L|T,C to any tangent space has invertible Legendre
map. In practice L|T,C will be strictly convex:

L|T,C = a positive definite quadratic form T plus a constant —V'(z).

2.5.2. Lemma. If L is the difference between the kinetic and potential energy then H is
the total energy

Proof. Let x € C and p € T;C. Observe that ¢ = 27 is a positive definite quadratic
form on T,C, and denote by () the positive definite quadratic form on 7);C, obtained by

transporting ¢ via the isomorphism =N given by ¢q. then

Ha,p) = £() (,0)% LIITC) () = £(E-V(@) () = Z4V(a) = “T on T;C" +V (a),
where we denote by “I”= “T on T*C” the kinetic energy function transplanted to a

function on 7*C by the same isomorphism (recall that 2— (>_m;z;, —)).

2.5.3. Hamiltonian equations for the momentum curve.

Lemma. In terms of the momentum curve ,u(t)dzef (q(t),p(t)) : R—-T*C, the Euler-
Lagrange equation for the velocity curve becomes

p(t) = —0.H(q(t),p(),t)  and  g(t) = DH(a(t),p(t), ).
Less precisely,
p= —H, and ¢g= Hp.

[A terrible crime has been committed in the last line since the symbols p and ¢ have two
meanings. On the LHS p is a certain function of time, a component of the momentum
curve, on the RHS p is a coordinate on the phase space T*C.]

Proof. [We will only consider the case when L = T(z) — V(z).] While the evolution
curve z : R—C satisfies Newton‘s equation, the velocity curve (z,4) : R—TC satisfies
Euler-Lagrange equation and one definition equation

oL . d OL . . dz
a_x(x(t)ax(t)at) - %a_x(m(t)am(t),t)a and .Z'(t) - %
By the definition of the momentum curve p(t)dze 02 L(z(t), (t)) so EL equation is refor-
mulated as p(t) = L0,L(x(t),%(t)) = 01L(x(t),%(t)). Now we move that to T*C
0 0

P(t) = 81L(x(t),a'c(t)) = 4. (T(l") - V(:c)) ‘wzz(t), T=a(t) = _a_ac V(fﬂ) |z:w(t), F=a(t)

-
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= —% (“T"(p) + V(@) lo=att), p=p(t) = —% H (z(t), p(t))-

Also,

0 H(q(t),p(t)) = 0:(“T7(p) = V(®)) la=ae), p=pty = dpry “T” = &(t).
The last equality is the computation of the Lagrangian map for the function “7"”’ |Tw*(t)C

at the point p(¢). Now recall that we start with a positive definite quadratic form 7" and
that “T™ is its Lagrangian transform, i.e., “the dual” positive definite quadratic form on
the dual vector space. It remains to observe that the Legendre maps for dual quadratic
forms are mutually inverse.

2.6. Poisson structures. We will interpret the Hamiltonian equations above in terms
of the Poisson structure, a standard geometric structure on the cotangent bundle.

2.6.1. Lie algebras. (a) Commutator in an associative algebra. (b) Vector fields. (c) Lie
groups.

2.6.2. Poisson structures. (a) On a commutative algebra A. (b) On a manifold M.

(c) The canonical Poisson structure on 7*M. If M = R" then

{f7 g}d:ef Z fpig(Ii - fQigpw

hence
{pia _} = aqw {Qi’ _} = _api and {pi,(]j} = 5ij'
(d) Function f on M defines a vector field fd:ef {f,—} on M.

2.7. Canonical formalism. Using the canonical Poisson structure on 7*C, Hamiltonian
equations are rewritten as

p(t) = {H,p}(u(t),t)  and  4(t) = {H,q}(u(d)?),

p= {H,p} and q(t)= {H,q}.

2.7.1. Observables. We call T*C the phase space (its principal property is the Poisson

structure). We call functions on the phase space observables since ¢ € C*°(T*C) can be

observed any time t, i.e., it defines a function qﬁ(t)d:ef ¢(u(t)) of time. The evolution of

¢(t) is always given by the Hamiltonian
d(u(t),t) = {H, ¢} (ul(t),t), ie, ¢= {H ¢}
(This is true for the coordinate functions p;, g; hence for all polynomials in them etc.)

This is the final formulation of the canonical formalism.
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2.7.2. Hamiltonian vector field. This is the vector field H on T*C associated to the Hamil-
tonian function. In terms of this vector field Hamiltonian equations become

i) = H(p()),

i.e., the solutions are integral curves of the flow defined by the Hamiltonian vector field.

2.7.3. Harmonic oscillator ezample. There L = T(i) — V(z) = 2i? — 522, hence

. 1 k
H= T()+V(x)= %pz + §q2

and
~ 1, k., 1 k 1

So, H= %p(?q — k-q0,. If k =m =1 then H = pd; — g0, and the integral curves are
circles. In general they are the ellipses %pQ +k¢>=c, ¢>0.

2.8. Summary. We proved equivalence of several differential equations. The balk of the
time went into defining the framework for the quantities involved - manifolds, tangent and
cotangent bundles. This is equivalent to specifying how these quantities transform under
the change of coordinates which is the classical language that is standard in physics.

If our system of points has some constraints, its configuration space (all possible positions)
will be a manifold M (say a submanifold of C = &™). Still, the Lagrangian formalism
applies with L a function on T M.

The original Newton‘s law F' = ma looks differently in different coordinate systems, i.e., it
is not invariant under the transformations of space other then the Galillean group (trans-
lations, rotations and 7). The Hamiltonian equation (canonical formalism) is invariant
under a large class of transformations of 7*C (rather then only C) — the ones that preserve
the Poisson bracket (canonical transformations or symplectomorphisms). Reducing the
problem to the simplest form by a choice of a symplectic coordinate change is said to be
the strongest method in classical dynamics (Arnold).

2.9. Extra: Symplectic structures.

2.9.1. Differential forms. A p-form w on a manifold M is a smooth family w,,, m € M,
with each w, an alternating multi-liner form on 7;,,M in p-variables. Let AP(M) be the
vector space of p-forms on M, then A°(M) = C>(M).

2.9.2. De Rham differential. De Rham differential d = d,, : AP(M)— AP (M) satisfies
d?> = 0. For p =0, dy = df is the usual differential etc. We say that a p-form w is closed
if it is killed by d,.
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2.9.3. Symplectic structures. A symplectic form on M is a closed 2-form w such that each
bilinear form w,, on 7;, M is non-degenerate.

A symplectic form w on M defines a Poisson structure {—,—} on M and is in turn
determined by it. So a symplectic structure is a special case of a Poisson structure.

2.9.4. Cotangent bundles. On T*M one has a canonical 1-form n which in local coordi-
nates can be written as n = Y. p; dg;. Then w = dn = > dp; dg; is a canonical
symplectic structure that gives the Poisson structure above.
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3. Example: Equivalence of three actions for a | Free particle

In the simplest possible example of a free particle we will see how three actions are
reasonably equivalent.

e (A) In Newtonian setting (i) the obvious action is the kinetic energy and (ii) the
evolution of the particle is naturally parameterized by time.

e (B) In a relativistic length formulation we consider (i) the action will be the length
of the trajectory in spacetime and (ii) we add a (physically meaningless) quantity,
a choice of a parameterization of the trajectory since the time is now not divorced
from space so, there is no canonical parameterization

e (C) The relativistic kinetic formulation has (i) action quadratic in , (ii) another
auxiliary field — a metric g on the worldline 1.

The Newtonian kinetic energy action is physically natural. The nice mathematical features
of the length action are that it is familiar to mathematicians (geodesics) and makes sense if
we increase the worldsheet dimension (volume action). For physics, it passes the obvious
classical test: the solution of the equation of motion is the same as in the non-relativistic
setting (as it should be since a free particle is inertial).

The unpleasant feature of the length action is that the quantization is difficult since z ap-
pears under a square root (Lagrangian is really the square root of the kinetic Lagrangian!),
and this makes quantization difficult. The “relativistic kinetic action” resolves the last
problem (it is quadratic in %), and also allows for the massless particles.

Its formula is hard to justify directly, however it passes a classical-quantum test of com-
parison with the length action: the solutions of the equation of motion are the same and
the new action reduces to the length action at the criticality of the auxiliary field.

3.1. (A) Newtonian setting: the kinetic energy action. In general, the Lagrangian
is the difference of kinetic and potential energy. The meaning of “free particle” is that
the potential is absent, so

L=T-V= i,

and the action is a time integral of the Lagrangian

ty ty
Sla] = / dtL(3) = / dt%:fc?
ti t;

1 ?

Therefore, the EL-equation L, = %Li NOwW says

d
0=1L, = %%552 —mi, ie, &=0.

So, acceleration is zero, velocity is constant: © = v, and the solutions are the lines

T = xo+ tv.
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3.2. (B) Relativistic setting: the spacetime trajectory length action.

3.2.1. Relativistic setting. For a relativistic setting one needs a formulation in which tzme
s not separated from space. So the evolution of a particle should be viewed as a curve C
in the spacetime M.

For calculations one still needs a parameterization and now we can not parameterize by
time anymore. So, the price we pay is the introduction of an additional datum, a choice of
a parameterization x of C' by an interval I. The choice of parameterization is physically
meaningless since the action does not depend on it (the Lagrangian does). Physicists call
this invariance under reparameterizations, these new symmetries (reparameterizations)
precisely eat up the new degree of freedom.

3.2.2. Length action. The action will be the length action S[C] = [(C) for the spacetime
trajectory C. The idea is that the most natural evolution is the one that minimizes the
trajectory length. Notice that on the level of Lagrangians this is the square root of the
above kinetic energy action!

This length action is familiar mathematically (solutions are geodesics), but it is more
complicated then the kinetic energy action because of the square root.

The action of the trajectory C, calculated in terms of a parameterization z is
S[C] ¥ S[z] &' m / dl= m / dr —i? = / dr L(%)
c I I

where dl = d1 /—12? is the length of a piece of the curve C and the Lagrangian is

L() = mv/—i2.

3.2.3. The role of the mass factor in action. Removing the mass factor from the action
would not affect the EL-equation. However, the next lemma shows that this would fix
the size of the canonical momentum to be 1.

3.2.4. Lemma. (a) The canonical momentum is®

_m:i:
b= =z

(b) The EL-equation (equation of motion) is

i( m
dt \/—72

3Here, velocity with lower indices means that we view it as a cotangent vector. This and the mass
factor are standard, a nonstandard feature is the denominator. It comes from taking the square root of
the kinetic energy in the Lagrangian.

)= 0.
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This means that \/%zz’ = cis a constant vector which is necessarily a unit vector. So, all

solutions are of the form
= ¢(1)-c,

where ¢ is a unit vector, and ¢ is any function ¢ : =R (¢ is the length of ).

(c) There are two kinds of symmetries of the action

e (1) Spacetime symmetries: the Poincare group P. These are the diffeomorphisms
P of the spacetime that preserve the metric G. Such P moves z to Poz.

e (2) Group Dif fy(I) of orientation preserving reparameterizations of the interval
I. Any ¢ € Dif fo(I) changes x to zo¢™".

Proof. (a) The canonical momentum is defined from the Lagrangian pe 2 L. Since
8 -2 8 .

1

ozt = ozh M@ 27 = O M8 + O 87 = 2 &” = 2@y,
we find that . )
1 -2z, mx,
Pu= —ms———b = ——&
g 2V—a?  -i?
(b) The EL-equation is L, = %Li = %p, ie., 0= %p,

3.2.5. Remark. The huge non-uniqueness of the solutions is just the freedom in reparam-
eterizations of the trajectory C. All curves C are given by the simplest parameterizations
%, = c for a unit vector c. So the curve C is a line in spacetime. This is the same as the
solution we found for the non-relativistic motion in space, as so it should be since inertial
motion notices no relativistic effects.

In this sense, the length action in spacetime is a generalization of the standard action in
space.

3.3. (C) Relativistic setting: kinetic action with a worldline metric. We will
improve the relativistic length action so that

e (i) it is quadratic in 4 (a la the kinetic energy action) and
e (ii) it allows for massless particles.
e (iii) In some sense it is equivalent to the length action.

A quadratic dependence in & is much simpler and preferable for path integrals. The price
will be the introduction of another auziliary field — a choice of a Riemannian metric g on
the worldline I. * The action is

er 1 .
Slz,9 € — /1 dl - (2)g,—m’.

“In the preceding construction, on the worldline we used the pull-back metric ¢ = £*G coming from a
Lorentzian metric G on the spacetime, but we effectively used —z*G which was Riemannian because of
the light cone assumption on the motion.
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We will assume that m # 0 throughout, and revisit the massless case at the end (3.3.4).

I do not know how to motivate this formula,® but we will check that it has the properties
(i-iii). For the notation see

3.3.1. The coordinate notation. The metrics g and g* = ¢g~! are given by the functions

1
ngd=ef 9(0:,0;) >0 and g”d:ef g Hdr,dr) = —
Grr
on I. We also encoded ¢ in terms of the einbein

e V9, = length of 0,.

By dl, we denote the length of a piece of the interval I, i.e., dl = e(1)-dr.

The square speed —(:ic)égdzef - a'cG- &, is the measure of size of the velocity (1) €
’ g

Homg[T; (1), TypiryM] = T (I)®Tm(7)7]\/.f, which is given by the inner product (¢*),® G,
so by C.1.2,
oxr Ox
2 R
(#)c,e = arcor 7 -
So, in coordinates the action is

1 . .
S|z, g] = D) / dr /9 (g773% —m®) = / dr L(z,g),
I I
for the Lagrangian

L(t,g) = —5 [07)38 — (¢7) m?]

Notice that = is a dynamical variable and g is not.
3.3.2. Variations with respect to the inverse metric g—* and the path x. We have two fields

so we will get two criticality equations, the vanishing of the variations (differentials) with
respect to ¢~! and z. ©

Lemma. (a) The criticality equation d‘sgfr = 0 with respect to the inverse metric, is
2 *
m , 1 = . z*(—G)
g = 2 e G = (=2%), e, g= oz

It determines the metric g in terms of x — up to a mass factor, g is the z-pull-back of the
metric —G on the spacetime.

S
(SgTT

1., . . . . .
(¢"")21 is a constant vector, i.e., 7-velocity is a multiple of some vector ¢

(b) The criticality equation with respect to the path z: = 0, is the requirement that

. 1
T = grr2-C
5Tn particular, how do length and mass have the same units?

60ne uses g~! so that the variation 62*5, is proportional to g.
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1

Proof. (a) Since the metric g—' is a non-dynamical field

55 _ —l- 1 T —% 21 1 TT % TT 2.2

o= L= — e = () = =) g 4 )
(b) Since z is a purely dynamical field

6S 0 1 900 . ! 10 !

g _Lw - - _- 2 5m2 TT\—% 2: - ™V2.94].

il 210 ) 5 3r5g W) = (g7T)Em 5 3 L97)? 2]

3.3.3. The relation to the length action. We will now check that the passage from the
length action to S|z, ¢] is an example of the philosophy 3.4.1 of adding an auxiliary field
to the action, while keeping the physics essentially equivalent.

Lemma. (a) (Reduction at criticality.) At the criticality for the metric g=!, the new action
reduces to the length action

S[x’gHg: # = /I‘ dr mv -2 = Slength[x]-

(b) (Classical equivalence.) The criticality equations of the new action S[g, z] in both the
metric g and the path x, together amount to the criticality in x of the length action and
a formula for g in terms of = (g is the z-pullback of the space time metric ¢ = —z*G).

(c) The symmetries of the action S[g, x| are the same as for the length action S[z].

m2

—32)

Proof. (a) At the criticality equation for the inverse metric " =

1
e 2 = —— / d’f (gTT)%j,/_Q_ (gTT)—%mQ
I

—z'2 2

S['/Ll’g] gTT= :’;2

1 m V=12 1
= dT i? — m?= —= / dr —2mvV—12 = /dT mv —12.
V—i? m 2 J1 I

(b) The cr1t1cahty for g is a formula for g in terms of z ¢"7 = %;, which says that

grr = —52*(—G). We can use it rewrite the criticality equation in = %[(g”)%:b] = 0, as

0= %[\/%a}], but this is exactly the EL-equation for the length action.

3.3.4. Relativistic kinetic action for massless particles. Now we consider the case when

m = 0. Then the action is
def 1 .
S -5 [ a @k,
I

The criticality equation with respect to the path x: g—i = 0, is, as above, the requirement

that the 7-velocity is a multiple of some constant vector ¢

. 1
&= grr2-C

The relation to the length action in the massive case was that the kinetic action reduces
to the length action at the criticality in ¢g~'. However, in the massless case there should
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be no relation since there is no length action for a massless particle. On the calculational
level this is seen as the absence of solutions of the criticality equation with respect to the
inverse metric — the equation is ¢ = 0.

3.4. The philosophy of adding an auxiliary field to the action. We are interested
in

adding an auziliary field y to action S[x] while keeping the physics “equivalent”.

Roughly, the new field will be eliminated either by the new criticality equation (when the
action depends on it), or by the new symmetries (when it does not).

3.4.1. Adding an auziliary field y to action S[x]. By this we will mean passing to a new
action S[z,y| such that:

(1) S reduces to S at the criticality for y. (i.e., criticality gives y = ¢(z) and
Slz, 6(x)) = Slz)), and

(2) Actions are classically equivalent, i.e., solutions of d,S = 0 and d,§ = 0 = d,S
are the same.

(3) (???7) The symmetries for S[z,y| are the same as for S[z].

3.4.2. Adding a “physically meaningless” field. This is a simpler version. The new action
S|z, y] simply does not depend on the new field y:

S|z, y] = Slz].

So, y is really just a device for calculating the action S[z] of z.
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Part II. Quantum Mechanics
0. Intro

" We start with basic principles of quantum mechanics:

The probability of an event refines to a complex number called the amplitude.
Amplitudes combine (by addition) in a much simpler way then the probabilities.

Our justification is based on (idealized) experiments with a finite number of possible
evolutions of the system.

0.0.3. Lagrangian approach. When one applies these principles to systems with continu-
ously many possible evolutions, the formula for the amplitude of a certain event transforms
from a finite sum to an integral of amplitudes over all possible evolutions (=paths), i.e., a
“path integral”. The key is now to know the formula for the amplitude Z[z] of a possible
evolution, i.e., a path z. It turns out that this is a unit complex number Z[z] = [
with the phase equal to the action S[z] of the path (up to the Planck constant £). So this
ties with the classical Lagrangian approach.

0.0.4. Hamiltonian approach. The fundamental experimental fact here is that the quan-
tum configuration space — the space of states of a quantum system — has a structure of a
Hilbert space H. It usually has some functional interpretation such as H = L?(C).

Moreover, the observables (in the sense of real functions on the momentum configuration
space T*C), now become hermitian linear operators on H. The evaluation of an observable
f on a state v, i.e., the measurement f(v) of f at v, now becomes the eigenvalue of the

operator f on the vector v. (For a more precise statement see the Dirac axioms of Q-
Mechanics in 0.1 bellow.)

In particular, the Hamiltonian function H on 7*C now becomes the Hamiltonian operator
H. Hilbert space comes with a hermitian operator

The physical law governing the system is now formulated as:
Time evolution of the system is generated by the Hamiltonian operator H.

The meaning is that the evolution of the system in time ¢ is obtained by the unitary
operator U(t) = e acting on the configuration space H. So, H is the infinitesimal
generator of time evolution.

0.0.5. Functional realizations of H. In the example of electron on a line or in a vector
space V, we will see that Hilbert space H can be realized as L*(V'). Physicists use two
traditional modes of computations (i.e., vies on the Hilbert space S.

"There are two introductory sections for this part, and I need to fuse them!
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e Use the subspace T of nice states (i.e., the test functions), and its continuous dual
D = T" of T, which is the space of idealized, i.e., distributional states.

e Use algebraic structure on a dense countable-dimensional subspace V of H (or of
T). (This we will do for the harmonic oscillator, i.e., when the potential is a
quadratic function of position V = —z2.)

0.0.6. Historical development: Hamiltonian to Lagrangian. We will follow the historical
development: we develop the operator approach to quantum mechanics, and then use it
to derive the path amplitude formula.

Mathematicians often neglect the Hilbert space H, i.e., they do not view its appearance
as the fundamental event. Rather, they are impressed by the fact that the quantization
of functions on 7*C to operators, happens in an organized way: the commutative alge-
bra O(T*C) of functions (“observables”) on T*C, deforms to a non-commutative algebra
Dc(h). Then they find H as a natural representation of the algebra D¢ (%), hence they re-
cover the operator interpretation of quantized functions. (However we have most difficulty
with unitarity?)

The mathematical reason that the algebra O(T*C) deforms is that 7*C has a canonical
Poisson structure. So, we start with the mathematical framework for the Hamiltonian
approach: the deformation quantization of Poisson algebras . For instance we find that
Dc(h) is the algebra of differential operators on C, so ‘H will be its natural representation
O(C) (in various incarnations such as L?*(C)).

We will calculate the amplitudes in the operator approach and find that the result is a path
integral. This traces the historical discovery of the precise formula for the integrand in the
path integral. (However, after making this observation, Feynman gave an independent
direct heuristic justification of the path integral amplitude formula.)
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0.1. Dirac axioms.

(1) Deterministic axioms
(a) To a physical system there corresponds a Hilbert space H (the configuration
space of the system), and a Hermitian operator H on ‘H (the Hamiltonian).
(b) To every state ¢ of the system there corresponds a “wave function” ¢ € H,
defined up to C*.8
(c) If at time O the system is in the state 9, then at a time ¢ it is in the state
e 7 tH .
(2) Stochastic axioms related to measurements®
(a) To any measurement process there corresponds a hermitian operator @ (an
“observable”). If H has a basis v; with Q-eigenvalues )\;, then the only possible
values of the measurement are the eigenvalues J;.
(b) If the system is in a state ¢ = ) a;v; (and we normalize v;’s), the probability
ZAZ:)\ lai|? ZA,-:)\ |a;|?
> lail? >
(¢) If the measurement produces value A then the measurement process has moved
the system from state 1) to the state v;.

that the measurement will give A is

8The terminology is based on the functional realization of 7.
9Here, as in the original Dirac formulation, one assumes that the spectra are discrete and there are no

multiplicities. A more precise version:
(a) To any measurement process there corresponds a hermitian operator ) (an “observ-
able”). So, Q = fSpec(Q) A dp@()\) where p@ is the associated projector valued mea-

sure. The only possible values of the measurement are the eigenvalues A € Spec(Q).
(b) If the system is in a state ¢ = [ e d)\ (with “yy in the eigenspace A”), the
probability that the measurement will give a value in the interval [Ay, Ag] is

o A PR
%[ %[
(c) If the measurement produces value A then the measurement process has moved the
system from state 1/ to the state pgw.
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1. Principles of Quantum Mechanics

Text. R.P. Feynman, Quantum Mechanics, volume 4 of Feynman's lectures on Physics.

1.1. Amplitudes. We have no natural experience (intuition) about what happens on the
small scale.!® By analyzing certain particle experiments one arrives at the following picture
of quantum systems, i.e., systems on a small scale. This is common to the Lagrangian
and Hamiltonian approach.

1.1.1. Complex numbers and amplitudes. The complex numbers appear in analogy with
the water waves — these are known to require complex numbers in other to describe
interactions. In quantum mechanics they appear as “probability amplitudes” which are
refinements of the probability of an event. This gives There is a “pairing” or “inner
product operation” on states, given by the

probability amplitude (j|i) € C, for a transition from one state i into another state j.

Amplitude is sesquilinear: linear in ¢ and anti-linear in j.
1.2. Hilbert space setting (the Hamiltonian view).

1.2.1. The linear algebra of a Hilbert space. The notion of the “state of the system” is
the analogue for quantum systems of a point of the configuration space — it is a complete
description of the system at a certain time. A fundamental observation:

the set H of all states of the system forms a Hilbert space,
is obtained in the following way:

(1) A choice of a “filtering apparatus” S (an experimental machinery), gives the family
Bg of “S-pure” states. These pure states are orthonormal for the probability am-
plitude pairing. Moreover, we can assume that these pure states can not be filtered
into simpler states (for this, if need be, we replace a simple filtering apparatus S
by a succession S = (S, ...,Sp) of of such filtering apparata.)

(2) The additive structure of the set # of all states of the system comes from the
further experimental fact that for any state ¢, amplitudes (¢,7), i € Bg, behave
as coefficients of a vector ¢ in the basis Bg.

1.2.2. Appearance of linear operators. Starting from the notation (z|s) for the probability
amplitude one uses symbol |s) to denote state s, or the corresponding vector. An operation
A on states can be described in terms of the amplitudes (j|A|) for the probability that
operation A on a particle in the state ¢ will give a particle in the state j. Again, we
check experimentally that the amplitudes (j|A|i) are sesquilinear in 7 and j (linear in %

10Tt may be difficult to admit.
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and anti-linear in j), so we can think of such operation A as a linear operator |s)—A|s)
on the space of states. This interpretation of

amplitudes as matrix coefficients

is the heart of the Hamiltonian approach.

1.2.3. Time evolution by the Hamiltonian operator (Schroedinger's equation). Next ex-
perimental act is the time evolution v (t) of a state ¢ has an infinitesimal generator, a

linear operator H which we call the Hamiltonian operator:
21 -

d
ai/)(t) = FH .

This we call the abstract Schroedinger‘s equation. To apply this formalism, one needs to
say what H is in a given situation. This gives a particular Schroedinger equation, which
is a differential equation that describes the evolution of the quantum system.

Historically, this breakthrough came in 1926 when Schroedinger described by such equa-
tion the motion of electrons on atomic scale. The above conceptual framework came later,
and it become the foundation only with Feynman‘s book.

1.3. Feynman integrals (the Lagrangian view). Feynman’s point of view on quan-
tum mechanics is that the amplitude for an event is total of amplitudes over all possible
evolutions x of the system that result in this event. In the Minkowski setting (physically
reasonable), this is an oscillating integral

/d:c e%s[“’].

The amplitude for the evolution @ is a unit complex number e#5®!

where S is the action.

The relation to the classical mechanics comes from the Principle of Stationary Phase,
which says that the leading contributions to an oscillating integral come from points
where phase does not vary. So the classical solutions — evolutions « such that d,S = 0
give the main contribution to the amplitude. In other words, it is most likely that the
system will evolve according to a classical solution, but other evolutions also contribute.

We will follow the historic appearance of Feynman integrals:

1.3.1. Operator approach leads to Feynman integrals. When we try to account for the
amplitude of a certain transition from time ¢; to time ¢;, as an accumulation of contri-
butions over small time subintervals dt = #;_1,1x], we find that the basic principles on
how the amplitudes interact give contributions from all possible positions z during dt,
and all possible momenta p during d¢t. So, the amplitude is an integral over time ¢ and
all possible choices z(t),p(t) of the position and momentum at time ¢. So we really get
the integral over all curves (z,p) in T*C.
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The integrand happens to be exactly e#5%#) for some action S on paths (z,p) in T*C. This
comes from the formula for the Hamiltonian operator as a quantization of the Hamiltonian
function, which is of course related to the Lagrangian.
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2. Amplitudes

2.1. Shooting electrons through holes leads to: probability, complex numbers, un-
certainty principle and the dual nature of particles.

2.1.1. Ezperiment. In an idealized experiment, suppose that a source shoots something
towards the wall with holes 1 and 2. A bit behind the 1st wall is the second parallel wall,
with a detector that counts the hits at a position z ( a coordinate on the second wall).
Consider the probability distributions

e p(x) for the hit to be at z, and
e p;(x) (for s = 1,2), for the hit to be at x if only the hole i is open.

2.1.2. Shooting bullets. Assume we shoot some kind of bullets which can be deflected in
an arbitrary direction when passing thru the hole, but they do not break.

So, bullets they arrive in quanta — a bullet at a time — (no halves etc) and clearly p = p1+po
which we describe by “no interference”. (The contributions from each possibility add up,
so there is no interaction between the two kinds of events.)

2.1.3. Shooting water waves. For water waves, we measure not the probability - the wave
will certainly arrive — but the intensity I(z) at x, which is defined as the mean square of
the height (energy) of the wave. Here, the arrival is a continuous quantity. Notice that
now two waves are going to interfere at x.

The height of a single wave at z is of the form
H(z,t) = C(x)cos(wt —p) = A(x)cos(wt) + B(x) sin(wt)
(harmonic oscillator!), which one can rewrite as
H(z,t) = Re[(A(z) —iB(z))e™"] = Re[h(x)e™'], where h(:r:)d:ef A(z) —iB(x).

We will call the complex number h(z) the “amplitude of intensity” at . Then the intensity
at z is going to be

der 1 2l 2 1 o 2 2 2 .. 2 .
() 27/ /0 H(x,t)" dt o7 e /0 cos”(wt)+B?sin”(wt) sin(2wt) dt

1 2m fw 1 27w 1 1
= A? BQ/ 2(wt) dt = —— (A? B2/ -2 = = |h(=)%
s @B [ et di= o (B [ Do = ()
The way the intensities add up when two waves (with the same frequency w) interfere, is
complicated, the difference d in the phases gives I = I +15+2+/111; cos ¢ (the “cosine rule
in a triangle”). However, the formula for the addition of complex amplitudes is simple:

h(z) = hy(h) + ho(z).
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2.1.4. Shooting electrons. If one shoots electrons, they will arrive in quanta (only the
whole electrons), but the probabilities p;(x) at the position x have the same interference
pattern as the intensities of water waves.

(For the comparison of the three experiments, notice that if one shoots bullets, water
waves or electrons; the graphs of p;‘s will always be the same (a random distribution),
while the graphs of p(z) will be the same only for water waves and electrons.

This suggests that electrons have dual nature in the sense that besides their standard
behavior as particles (“bullet-like”), they also sometimes behave as waves. Moreover, we
see that one will need complex numbers to describe particles. Once this “correct” point
of view is taken — that the probability is originally a complex number — we return to the
“no interference” situation (now for amplitudes rather then for probabilities themselves).

2.1.5. Uncertainty principle. This is the principle that our observation necessarily affects
the experiment! We see that this has to be happening because if one can actually observe
thru which of the holes the electron is passing, then clearly p = p; + ps as for the bullets.

2.2. The amplitude principles. These are basic principles of Quantum Mechanics:

e (0) (Amplitude axiom) The probability p of an event can be refined to a complex
number ¢ called probability amplitude, they are related by

p=|¢]*> and ¢ = /pe”,
So, the amplitude ¢ consists of the probability p and the phase 4, and always
9| < 1.

e (1) (Combining amplitudes) If an event can happen in two different ways then its
amplitude is

b= ¢1+ Po.
So, probability p = /(p1)2+ (p2)? + 2p1ps cos(d; — do)depends on the relative
phase.

e (2) (Concatenation) The amplitude for the particle to arrive from i to &k via j is
the product of the amplitude for the particle to go from 4 to j and the amplitude
for the particle to go from j to k.

e (3) (Reversal) The amplitude for the particle to arrive from i to & is the complex
conjugate of the amplitude for the particle to arrive from £ to .

The above axioms encode a lot, so we can use them as a foundation and derive ideas (like
the Uncertainty axiom), without invoking particular experiment.

2.2.1. Complexr numbers. We see now how elementary experimental facts construct all
aspects of complex numbers from nature. While (1) uses only a 2-dimensional vector
space R? with an inner product, (2) uses multiplication and (3) uses the real structure on
C, so we have recovered the whole structure of complex numbers from physics!
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2.3. Uncertainty principle: a quantitative version. We will now try to observe
through which hole did the electron go through. For the observation we use the light, i.e.,
a photon, of a certain wavelength. We will see that two features of the situation

e The result of the measurement, i.e., what we it tells us has happened,
e How efficient the apparatus is;

are both dependent on the choice of wavelength. This degree of freedom gives us quanti-
tative view on the relation between these two features. The result will be that in order
to make the apparatus more efficient (so that it is likely to report a definite result), we
have to affect more the result of the measurement.

2.3.1. The experimental setting. Behind the 1st wall, let us add a source of light (emitting
photons),l in the middle position, and two light detectors D; and Dy, near holes H; and
H,. So one has
electron
gun
Hole, Hole,
light
source

D1 D2

For i,j € {1,2}, we will denote the amplitude of basic events by

e (ilg) = (H;|g) is the amplitude for electron to shot out of the electron gun to pass
through the hole H;,

e (z|i) = (x|H;) is the amplitude for electron that went through the hole H; to go
to the position z,

® a;; is the probability amplitude for an electron which has passed through the hole
H;, to scatter a photon to the detector D;. By symmetry,

11 = a99 dZEf «a and 91 = Q12 d:ef /B
The influence of the wavelength:

(1) efficient apparatus case: if the wavelength is small , then approximately

B =0.
(2) inefficient apparatus case: if the wavelength is large, then approximately
ja* = [B].

We will also assume that the phases of a and 3 agree.

2.3.2. Calculation of some amplitudes. First, the amplitude ¢;(z) and three probability
p1(z) of the electron to go from the gun through the hole H; and go to the position z
(the second hole may as well be closed), is

¢i(z) = (z|H:)-(Hilg) and 4(z) = |du(2)]".
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Next, our measuring device, will tell us that the electron went through the hole H; and to
the position z if the photon shows up at the detector D; and the electron at the position
x. This happens in two cases (i = 1,2), when

electron goes from g to x via the hole H; and at H; it scatters a photon to detector D;.

The amplitude for each of these two events is

(z]i)-aij-(ilg) = ay-¢i(x)-
So, the amplitude for the detectors to tell us that the electron went to go through the
hole 7 = 1 to the position x is

D ay(ali)ilg) = Y an-dil®) = an1di(2) + an-do(x) = a-¢i(x) + B-¢a(a).
The corresponding probability of the measurement to tell us that the electron went thru
the hole j =1 to the position z is therefore,

p = |y + B-of’.
The efficient case. Here wavelength is small , 3 is close to 0 and
P Jap[? = |ofpi.

The efficient case. Here wavelength is large, |a|*> = |3|?, and if we also assume that the
phases of o and [ agree then

p = ‘04‘2'|¢1+¢2‘2-

2.3.3. Conclusion. Let us count the number of hits at x in the presence of the measure-
ment apparatus, and see whether it depends on the efficiency of the apparatus.

If we divide by the light effect |a|?, in the efficient case we get the correct result p; =
#1(x)[?, so the total number of hits at x will be the sum

la* - (p1(2) + p2 ().
In the inefficient case we get the interference formula. and the total number of hits at x
will be
af? - 2|¢y + 6o,
showing the interference pattern. So,

The nature of our observation apparatus influences the events,
a more efficient apparatus causes a more classical behavior.
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3. Operators: the Hamiltonian approach

The basic idea here is that the configuration space for a quantum system is a Hilbert
space. This is deduced from experiments in 3.2. We find that the operations on states
are given by linear operators, and in particular that the evolution of the system is given
by one operator that we call the Hamiltonian operator (3.3).

The most relevant mathematical theory is the deformation quantization which we visit
in 3.1. To mathematicians, the most reasonable aspect is the fact that the quantization
of functions on 7*C to operators, happens in an organized way: the commutative alge-
bra O(T*C) of functions (“observables”) on T*C, deforms to a non-commutative algebra
Dc¢(h). The mathematical reason that the algebra O(7*C) deforms is that any cotan-
gent bundle has a canonical geometric structure: the Poisson structure. Once one finds
Dc(h), they recover the Hilbert space # as its natural representation. This usually gives
a functional interpretation of # and therefore leads to a Functional Analysis.

3.1. Deformation quantization: a mathematical notion of quantization.

3.1.1. Exzample: functions on the cotangent bundle deform to differential operators. For
each i € C consider the algebra Ay generated by p and ¢ and the relation pg — qp = fi-1.
In each of these, monomials ¢‘p’ form a basis, so we can think of them as a family of
associative algebras with 1 on one vector space A. We will think of .4; as the ring of
differential operators Dy on the line A' with coordinate ¢ and p = 9,. At the other
extreme, Ay = Clp, ¢| is the algebra of polynomial functions on A? and we will think
of this A? as T*A! with with ¢ a coordinate on the space A' and p a coordinate in the
vertical direction.

The same works for A" and it is invariant under a change of coordinates, so it actually
works on any manifold M.

3.1.2. Deformation of a commutative algebra gives a Poisson structure. Consider a vector
bundle A over a neighborhood U of 0 in C, and a family of associative algebra structures
;on vector spaces Ay, h € U, such that the multiplication a. b is an analytic function on

.A We say that this is a deformation of the algebra A = A, on U.

Since one can trivialize the vector bundle A near # = 0, this is equivalent to the following
simpler definition. A deformation of the algebra A over U is a family of associative algebra
structures - on the vector space A, such that (0) (Ao, ) A and (i) the multiplication

a b a,be A h € U, is an analytic function of #, i.e., near 0

af-ib: nz_% A" a-b, a,be€ A
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3.1.3. The ordering problem. The second point of view is more convenient for calculations.
For instance now we can say that f € A = Ay quantizes (deforms) to f in the algebra
A = Ay. However. this point of view is non-canonical since in practice the vector bundle
A does not have a natural trivialization.

For instance in our main example, the identification of vector spaces O(T*A™) = Dyn is
canonical only on certain generators g;, p; and z;,d;. Since there is no canonical iden-
tification for the whole vector spaces, various trivializations leads to various possible
quantization f € AA; of a given f € A,.

We call this the ordering problem since in this example, a specification of the ordering of
gi,p;’s gives a basis of all algebras A, hence a trivialization of the vector bundle A.

Our main interest is the correct quantization H of the Hamiltonian function H on
T*C. Notice that there is no problem if there are no products of p and ¢: H(gq,p) =

Hpotential (Q) + Hkinetic (p) .

Lemma. Any deformation of a commutative algebra A makes A into a Poisson algebra by

def aﬁb —_ bﬁa
e .

def iy A
{a/’ b} ﬁl_I)r(l) ﬁ 7

3.1.4. (Deformation) quantization of Poisson algebras. We will reverse the point of view
and suppose that we start with a Poisson algebra (4, {,}) (a commutative algebra with
a Poisson structure). A (deformation) quantization of the Poisson algebra (A, {,}) will
be any deformation A of A = A, such that the Poisson structure on A = A, induced by
the deformation is {, }. One also often says imprecisely that a specific algebra A; in the
family A; is a quantization of (4,1, }).

3.1.5. Differential operators are a quantization of functions on the cotangent bundle. On
any cotangent bundle, there is a canonical Poisson structure (1.2.6.2). We used it for
the “canonical formalism” formulation of classical mechanics. The above deformation
of functions on the cotangent bundle (3.1.1), is a quantization of the canonical Poisson
structure on the cotangent bundle, since the Poisson structure on O(T*A") obtained from
the deformation is the canonical Poisson structure:

p-q—4qp .

{9} tim " Jimy ™

h—0

3.1.6. Comparison with a quantization of a system in physics. In physics, the basic ex-
ample of quantization is that of the harmonic oscillator. In the Hamiltonian approach it
involves the deformation of the algebra of functions on the phase space T*C (a Poisson
space) to the algebra of differential operators D¢ on the configuration space. However,
more is needed:
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e A Hilbert space H with an action of the quantization algebra Dc. (In this example
we can use H = L*(C).)

e An interpretation of H as the space of (quantum) states — the quantum analogue
of the configuration space C.

e A particular “quantization” of the Hamiltonian function H on T*C to an “oper-
ator” H € Dy acting on H. (It gives the time evolution of the quantum system
v ety )

e Particular quantizations f € Dy of interesting observables f € O(T*C).

3.1.7. Unitarity problem. A number of questions arise, such as unitarity, i.e., we need a

(1) positive definite inner product on H, and
(2) it should be compatible with the quantization of observables in the sense that for

a real valued function f, fshould be a Hermitian operator.

This is needed to ensure both that the eigenvalues of fare real and plentiful, and this is
essential since the measurement of f on a state v of the system now makes sense only if
v € H is an eigenvector of f. Then one says that the value of the observable f on the
quantum state v is the corresponding eigenvalue.

The unitarity needs force the following quantization convention on generators''

pal= Tl

So, since the Poisson structure on T*A! is given by {p,q} = 1, we get [p,q] = ’f

3.2. Stern-Gerlach filtering apparata leads to Hilbert space structure on the space
of states. Consider the configuration space H of some quantum system. We will find that
the experiments endow it with a Hilbert space structure.

3.2.1. Dirac notation (j|i) for amplitudes. Dirac's notation for the probability amplitude
of the particle in state j to arrive into the state i is (j|7). '> The amplitude axioms (2)
and (3) are now written as

(kli)via j = (kl7)-(l)) — and  (k[i) = (i[k).

"UThis means that [ gﬁ, f’i/j = ﬁ{/p,—q\} i.e., the natural quantization of p is really ﬁ;ﬁ Say, the
Hamiltonian function H is real valued but the 1nterest1ng operator is the infinitesimal generator of tlme,
so it is the derivative of a unitary representation, and therefore it is anti-hermitian. It is denoted H

?Here we do not yet worry about the time it takes, the only question is whether certain procedure
will end up with the state z. However, it is not clear what this amplitude really is, i.e., does it depend
on a particular procedure or what?
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3.2.2. Pure states form a bases of the Hilbert space. We will consider the example of the
spin of a particle and we will use the (idealized) Stern-Gerlach apparatus to analyze the
notion of a spin. Since we are only interested in the spin, the state of a particle will mean
its spin (and we design the experiment cleverly so that no other feature of the situation
interferes. The final conclusion will be that the spin, i.e., any possible state of the spin
of a particular particle, lies in a certain finite-dimensional vector space (an irreducible
representation of SLy(C) or SU(2)).

A Stern-Gerlach apparatus consists of a (non-homogeneous) magnet thru which passes a
beam of particular particles. If the apparatus splits the beam into n beams, we say that
this kind of particles has spin ;1. Say, if there is no splitting (n = 1), then the spin is 0.
The spin is % if there are two beams.

In the case of a spin one particle we get three beams which are traditionally described as

e the up beam called +, its angular momentum is 7,
e the down beam called —, with angular momentum —#, and
e the undisturbed part of the beam called 0, with angular momentum is 0.

For a particular apparatus S of such type, we can say that a particle is in the “pure state
i for S” (we denote this state ig), if it “naturally belongs to the i* beam”. This is a
property of the particle: if we apply again the apparatus S to the i*" beam, this time it
will only produce the i beam.

The spectacular experimental fact is that each particle will go into one of these three
beams, the apparatus will find it in some pure S-state 7. So, for any state ¢, the experiment
will push it into one of the beams. We can measure the probability amplitude for a given
state ¢ to go to the i® beam, i.e., the amplitude (i|@) for the apparatus to find 3 to be
in the S-state 1.

It turns out that these amplitudes behave as coefficients in the decomposition of a vector
¢ into a linear combination of pure S-states. To see that this is meaningful, one compares
the coefficients for various choices of the apparatus. Let us follow the apparatus S with
another one of the same nature but a different build (direction), call it 7. Then the i"* S-
beam will split into T-beams and we encode this in the “transition matrix” of amplitudes,
denote

(T'S)ji = (jrlis)

the amplitude for a particle in the i*® S-beam to end up in the j* T-beam. One now
checks that these transition matrices have the expected algebraic properties — they behave
as the change of bases matrices for a vector space!®.

13Some algebraic properties of matrices: (0) (SS) is the identity matrix 1 and in general, transi-

tion matrix satisfies (i) (ST) = (T'S) (reversal) and (ii) (ST)(T'S) = 1 on the diagonal, (since
2 (ST)i(TS)ji= 3, |(T'S);i|? is the probability that the particle goes from is to some T-state, i.e.,

1).
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3.2.3. The conclusion.

e The space of states is a vector space H over complex numbers.

e The probability amplitude is a positive definite inner product (—|—) on H (linear
in the second and anti-linear in the first variable).

e Each Stern-Gerlach apparatus S chooses an orthonormal bases ig, i € Bg, of the
space of states H.

e Any physical operation A on states is a linear operator on the space of states .

For the last point, starting from the notation (z|s) for the probability amplitude one
uses symbol |s) to denote state s, or the corresponding vector. An operation A can be
described in terms of the amplitudes (j| A7) for the probability that operation A applied
to a particle in the state ¢, will produce a particle in the state j. Once we check the
sesquilinearity in ¢ and j, we know that these amplitudes are matrix coefficients of a
linear operator.

In any situation more complicated then the above study of spins, we may have to use
several apparata in succession to filter the atomic system into the pure states, that can
not be decomposed further. Then the algebra is the same.

3.2.4. Notation. Starting from the notation (¢|¢) for amplitudes, we often denote a state
¥ in H also by |¢). By (9| we denote the the corresponding linear functional obtain by
putting ¢ in the first argument of the inner product.

In this notation, the action of a linear operator A on H and its hermitian adjoint A* are

denoted
def def

* ef
Al) € |4y) and ($|A % (A9 € (]A-).
The meaning of the triple symbol is now clear
def

(W[Alg) = (¥|Ag) = (A™P|9).

In particular, for a hermitian operator H and a unitary operator U one has

(V|H|¢) = (Y|H¢) = (HY|g) and (¥|U[g) = (¥|Ug) = (U™'¢|¢).

3.3. Time evolution of a quantum system is given by the Hamiltonian operator
H. Here we switch the point of view from experiments in which the time did not have
any influence (the total effect of a certain apparatus we designed) to an undisturbed (by
us) evolution of a system. The effect of time on states is an operation that can be thought
of in terms of linear transforms U(ts,¢;) on the space of states.

One can ask does this means that the states “really” evolve under the action of U if
there is no disturbance (such as measurements), or that this is the “ideal” or most likely
evolution of the system (while the actual evolution is not really predictable). I think that
the only meaningful (measurable) quantity are the matrix coefficients (¢ |U (2, t1)|®), i.e.,
the amplitudes for ¢ to evolve to ¢ from ¢; to t5. So, U is really a shorthand for a bunch
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of numbers called amplitudes, that (we imagine) describe the probabilities of possible
evolutions.

3.3.1. Lemma. (a) Operators U(ts,t;) are unitary.

(b) If the physical system is time independent then U(t) = e for a (densely defined)
Hermitian operator H = 4|, U(t,0)."

Proof. (a) is the claim that the time evolution preserves amplitudes (U (¢, t1)¢, U(ta, t1)1) =
(¢, 9).

(b) Time independence: means that U(ty + t,t; +t) = Ul(ts,t1). Then U(ty, t1) =

U(ty —ty) for U(t)d:ef U(t,0). The consistency condition for the time evolution U(t3,t;) =

Ul(ts, t2)U(to, t1), now says that U(t) is a “one-parameter unitary group”, i.e., U(t' +t") =
U)U(t"). So U(t) is determined by values on a small interval near 0, more precisely,
the functional analyses says that U(t) = et for a (densely defined) Hermitian operator
H= 4,0 U(t). It is called the Hamiltonian operator since it will turn out to be the

quantization of the Hamiltonian function. H = =0 U(2).

3.3.2. Notation: time dependence of states. H is the configuration space of all possible
states of the system. We will relate it to time 0 by denoting

[, t) L the state which from time 0 to time ¢ evolves to )
We will call it the “state ¢ at time ¢”. Since |[¢)) = U(¢)|4,t), this is
¥,t) = U@®)7'[).

In particular, we will be interested in the “pure position state z at time t”, i.e.,
|$’t>‘$p0’t> = U(_t)‘xp0>'

3.4. Example: ‘a single electron in a vector space ‘ Consider an electron in a vec-
tor space V. We postulate that

e the Hilbert space H has two “continuous basis” given by the pure position states
|Upoy, ¥ € V; and the pure momentum states |p,,), p € V*.
e The amplitudes between position and momentum states (u,v € V, «, 8 € V*), are

(Opolttpe) = 6@ =), (Buoltme) = (@ = B) and (alzye) = e k).

This means that (i) L*(V) & H = L*(V*), and that (ii) the transition between these two
interpretations of H is given by the Fourier transform.

Let us first consider an electron on a line.

141¢ is called the Hamiltonian operator since it will turn out to be the quantization of the Hamiltonian
function. However, here we only found a logical need for the existence of such infinitesimal generator of
time evolution.
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3.4.1. Idealized position states and momentum states. One starts with the (idealized)
states |x) = |xp0), € R in which the position is absolutely known to be x (the index po
stands for position).

The states |z,,), € R form a continuous analogue of the pure bases states in a quantum
system with a finite dimensional space of states (3.2). We can think of these position
states as a continuous basis |z,,), ¢ € R, of the space of states. The idealized, i.e
distributional, nature of the states |z,,), * € R, occurs in the amplitudes

<yp0‘xp0> = 6(35 - y)

which make sense only as distributions. The precise meaning of this being a continuous
basis is that for any state 1) we now have

) = / (o) Ty d,

in the “weak” sense that this is true for amplitudes
01) = [ (auuli)-(Bhay)

There is another “basis” consisting of the similar (idealized) states |pn,) such that the
momentum is known to be p (p € R).

3.4.2. Transition amplitudes. > The two continuous bases are related by the amplitudes

<pm0 ‘$p0) = e 283

3.4.3. The functional interpretation of states as wave functions. Since any state ) is
determined by the amplitudes (¢|z,,), * € R, we can think of the state ¢ as a function

def

$(2)= (2po¢p) on R

For instance, pmo(2) = (TpolPmo) = (Pmo|Tpo) = erbT.

Lemma. (a) The functional interpretation of states gives an identification of Hilbert spaces

’HE)LQ( V), ¥—=1)(z). In terms of the continuous bases |3:p0> x € V, of the space of states,
the amplitude is the L*-inner product (¢[y)) = [;, ¢ ) dx.

(b) The transition between writing a state in terms of pure position states |z,,) and the
pure momentum states |pn,) is the Fourier transform.

5What is the meaning of these? For instance why is not invariant under translations in V/ (so there is
a distinguished position)? Certainly it should not be in invariant under V*-translations, i.e., the change
of momentum.
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(c) With the functional interpretation of states, any “nice” operator A on states, can be
written as an integral operator

(Aw)(y)/dx Y(z)-A(z,y) with the kernel A(a:,y)d:ef (0] A|dy)-

PTOOf. (a) (¢|¢> = <fV dz <xp0|¢>'|xp0>| IV dy <yp0|¢>"yp0>
= [, dody @M lorn = [ dody S5 —) = [ Fehte) do

(b) We interpret a state ¢ as two functions ¥,,(q) = (¢ue|?) on V, and ¢e(p) = (Pmo|?)
on V*. They are related by

djm"(p) - <pm°|¢) = <pm°|/vdm ¢p0(x)"$p0> = /Vdm ¢po(x)'<pm0|xpo> = /de ¢p0($)'67%p'w.

(c) We need A to make sense on the distributional states ¢, = |x,,), then one should be
able to pair Ad, to J,, and finally, operator A should really be given by these infinitesimal
contributions in the sense of

(AD) () (ool A) = (ol Al / 0z p(2)-|2p0) ) = / 02 () (po| Alre) = / dz (2)-A(z, y).

3.4.4. Quantum view on Fourier analysis. We have found a quantum view on L?(V) and
on the Fourier transform. The Hilbert space H — the space of states — seems to be attached
directly to the phase space T*V.

However, for any Lagrangian vector subspace L such as V or V*, H can be identified
canonically with L?(L) . Once we choose L, we get

e (i) a “distributional basis” |a), a € L of # (we also denote |a) by d,),

o (ii) an interpretation H—L2(L) by ()% (¥[8,), and

e (iii) the inner product on A given by the amplitudes can now be written in terms
of this “distributional basis” as L2-product written in the intriguing interaction
form

/L (6162)-(318) da.

3.4.5. Hamiltonian operator H and the Schroedinger's equation. The time evolution v (t)
of a quantum state ¢ = 1(0) is always given by the abstract Schroedinger‘s equation

d 7~
T Y(t) = EHW

With the functional interpretation of states, a time dependent state (¢) is a function of
two variables 1 (z, t), the Hamiltonian operator H becomes an integral operator with the
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kernel H(z, y)d:e£ (6| H |0,), and the Schroedinger equation becomes an integral-differential

equation
d i
G0 = 3 [ @@y do

For an electron on a line and in a potential V' (z), the Hamiltonian operator is

This is the quantization of the Hamiltonian function (the total energy)

2

_
H= o + V(z).

Actually, this is the historical origin of the idea of a deformation quantization.

With this explicit Hamiltonian operator we get the original Schroedinger equation
n? d?

" 2m da?

L d

i () = U 1) + V(2 (a).

By itself this equation describes (in principle!) all non-relativistic phenomena, such as
energy levels in an atom and chemical bindings. The relativistic form was given by Dirac
a year later (for instance it covers magnetism).

3.5. Example: | Harmonic oscillator|. Physicists think of the harmonic oscillator as
a mathematical formalism which covers a number of physical situations. For instance
a spring-mass-gravity system, a wave, or the above electron if a potential of the form
V(z) = c2? with ¢ > 0. Our goal will be to

understand the system in terms of the spectrum of the infinitesimal time generator a.

Our phase space will be the symplectic R?, i.e., T*R. However, we will find it convenient
to think of it as a complex line C and use the holomorphic functions.

3.5.1. The Hamiltonian function. On the level of the classical equation of motion, har-

monic oscillator is given by mgq” = —kq. In terms of the frequency parameter w = /k/m
this is
¢ +wq¢= 0.
The Hamiltonian function is the total energy
1 1
H(p,q) = —p* + k¢
(pa) = 5-p° + Ska

If we choose the units so that we have the unit mass, this is H(p,q) = 3p* + jw’¢.
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3.5.2. The quantization in standard coordinates. We think of the phase space as the cotan-
gent bundle T*R to the g-line R,. Then the Hilbert space is naturally viewed as the
space H = L*(R,) of functions on the g-line. From this point of view the functions
p,q on T*R quantize to operators on C°(T*R)C#H that satisfy the unitarity prescription

0,3 = %{p,q},. So, {p,q} =1 requires

[ﬁa ZI\] = ;
This leads to the normalization
~def

= v

d
. dq 9
We will introduce the Hamiltonian operator H as a naive quantization of the Hamiltonian
function H = 3p* + iw?q? so
Its eigenvectors in L?(R,) are the Hermite polynomials.

3.5.3. The quantization in holomorphic coordinates. We will pass to holomorphic coordi-
nates on T*R = R? given by

1 . _ 1 .

a = ——(wqg+1ip), qg = —=(a+a"),
. V%‘*’( 1 .p) and /—572

a = _/—zw(wq_zp)7 p = T(GI_(J/*).

Here, a* is the complex conjugate of the function a. We will think of a* as the basic
holomorphic coordinate z.

3.5.4. Lemma. (a) The Poisson structure {p,q} = 1, is in new coordinates

{a,a"} = .
(b) The quantizations of the generators are operators satisfying the commutation relation
from Dy

[a,a*] = h.
(c) At i =1 one can realize the algebra generated by @, a* and the above relation, as the
algebra of polynomial differential operators on holomorphic functions in z, by

a*= z and a= hd,= 0.

(d) The Hilbert space H is realized as the Hilbert space of entire functions in 2o Tt is

a completion of the space of polynomials C[z] = C[a*] with respect to the inner product

o™ [ TE a6 e G = [ T alar) e o0 G

21 o2mi
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Proof. (a) The Poisson structure {p, ¢} = 1 is now

{a,a")} = {wq+ip wq—ip}_
’ V2w ’ V2w

(b) The quantizations of the generators are operators satisfying the commutation relation

0.8 = flaa}= g

1 1
Awa+ip,wq — iph = o 2wilp,ab = i

(c) For the above operators
1

1 1 fi
a,a —— (W@ + 1p), —(wq — 1p)| = =—2wilp,q] = i— = h.
[@,a"] = [ %( q+1p) 2w( q—1p)] 5 D, G -

3.5.5. Corollary. (a) The Hamiltonian operator is

~

H= wua= hw 20.
(b) The eigenvectors of H are the powers of z = a* 1. We normalize them to unit vectors
(& @) _ =" Then
"ToVal T Val”
~ 1
The physical meaning is that the energy of the state 1, is fiw(n + 1).

Proof. (a) We just recalculate the Hamiltonian from standard coordinates

~ 1. < 1 \/
= -p + w2q2

S @) + gl @+ )
= _T“’[au(a*)taa*-a*aw %[a2+(a*)2+aa*+a*a]= S (@ + @d)
h h 1
(b) Now,
Hz" = hw(z0 + 5)2”: ﬁw(n+§)-z”

The change of variables z = z+iy = re?, gives dzdz = (dz+idy)(dzx—idy) = 2i dy dz =
2ir dr df, hence

= (%ﬂﬁm) =

2 . dzdz / rrtm zﬂ(mfn) R 2ir dr df
¢ Vn! Vm! 2mi r=0 Jo= 0\/_\/ 2mi

+00 T‘2n ) +oo u™
zénm-/ — e " 27"dr:5nm-/ — e “du
T

-0 n! u=0 n!

Bhetter then the special functions!
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3.5.6. The energy spectrum of a harmonic oscillator. The energy spectrum of the theory
is the set of eigenvalues of the Hamiltonian operator. We found that the energy spectrum
of a harmonic oscillator with frequency w = /k/m is'’
1 wh 3wh bwh
h — =0,1,... €., s ...

w(n + 2)’ n 7 7 1. 7 2 7 2 7 2 7
3.5.7. The representation theoretic organization of the Hilbert space (language of creation
and annihilation). Instead of considering a particular realization of the Hilbert space of
states H, one often considers the way it is organized by the action of the quantized algebra
of observables, i.e., an algebraic representation of the algebra of observables on a dense
vector subspace V' of H.

The action of the algebra Dy () = & Cp'¢7 = @ Ca'a¥ on H is given by the action of
two operators a and a*. The space is graded by the action of the Hamiltonian operator
H which corresponds to energy. We have observed that

Lemma. (a) Eigenvalues of H are bounded from bellow and there is a unique vector (line)
on which it has the smallest eigenvalue. We call it the vacum vector |vac).

(b) The vacum is killed by @ and applying a* to the vacum creates a bases (a*)"|vac), 7 > 0

of H.

So we call a* a creation operator, and a the annihilation operator, since a kills the vacum
and each vector is killed by some power of a. From this algebraic point of view, the
interesting space is the subspace V = @,>¢ -(a*)"|vac) CH.

3.5.8. Planck constant. To simplify formulas one often uses a choice of units for which
h = 1. However, one will sometimes think of # as a variable. Physically it corresponds to
the idea that when we change the scale that we are interested in, our view of the size of
h changes. Formally, it is a useful trick to have an additional variable.

3.5.9. Harmonic oscillator in a metric vector space. We consider a real vector space M
with a metric G which we diagonalize into

G= 3 @) =3 W)

1"We have calculated with the unit mass, but this did not affect the spectrum.
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4. Path integrals: the Lagrangian approach

Feynman’s idea of a path integral formula for the amplitude of an event is that one inte-
grates over all possible evolutions (histories) of the system that result in this event. This
is said to be the most physically fundamental and useful point of view. However, we will
follow the historical development and deduce the path integral formula as a consequence
of the operator approach.

4.0.10. Theorem. One can write this amplitude as a Feynman integral over paths in the
tangent bundle'®

@ity = | dey) AT
(z9): [tisty]=TC, x(ts)=w;, o(tf)=zs

Here, one uses the action on such paths

Sle.y [t L), 50),00) = [ dt jop— V(@)

t; t;
which for velocity curves (x,2) reduces to the standard action S[z|.

In the remainder we check this claim. What we get is rather a formula involving a limit
over some N-step piecewise curves

lim d(x7p)(t*,w*,p*) 6%8[($ap)(t*,z*,p*)] ’

N=roo Ju«n_curves” (D) (¢, ,0s,ps) iIn T*C

The path integral formula in the theorem is an interpretation (or shorthand) for this.

4.0.11. The setting for the formula. We consider a quantum mechanical system in a
Hamiltonian formalism, and we calculate the amplitude that the system evolves from
the initial pure position state z; at the initial time ¢;, to the final pure position state z; at

the final time ;. This is a matrix coefficient of the evolution operator U(At) = er-AtH ,

(g, tylwi, ti) = (wf|U(ty — ti)|ws)-
We will write it in the form of a Feynman integral over all paths into TC (or T*C).

4.0.12. The appearance of the Feynman integral. It is obtained by trying to account for
the amplitude that z; at time ¢; will evolve to z; at time ¢, as an integral over the
time interval [t;,tf], i.e., as an accumulation of contributions over small time subintervals

[tk—1, t].

(1) Inserting points ty,...,ty—1 between ¢; and t¢; leads to an integral
fRN—l dx,- - -dxpy_1 over all possible positions x; at moments .

BHopefully (?) this is an example of the philosophy of adding an auxiliary field to the action from
1.3.4.1. Here, one is adding y to x.
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(2) For short time intervals [tx_1, tx], the linear approximation (in ¢; — tx_1), of the
amplitude is given by an integral fRN dp:- - -dpy of contributions from all possible
momenta py.

(3) So, an approximation of the amplitude based on the partition t; = ty, ..., txy = ty,
ends up being an integral over N possible positions (z, px) in T*C.

(4) Interestingly, the integrand is exactly e#S for an obvious action S of the piecewise
liner path in 7*C given by these points. So we get the Feynman integral over all
“N-step curves” in T*C.

(5) Finally, as N gets large we get the precise formula for the amplitude — and we
interpret the limit of N-step curves to be the moduli of all curves in 7*C.

4.1. Matrix coefficients of ]? for the normal ordering quantization. Recall that
for a state 1) we denote by

¥,t) = Ut ),

the “state 1) at time t”, i.e., the state which in the period from time 0 to time ¢ evolves

to ).

4.1.1. Problem. Find the amplitude that the system evolves from the initial pure position
state ; at the initial time ¢;, to the final pure position state z; at the final time ¢;. This
is the matrix coefficient

(xr trlzisti) = (U(=tp)zp|U(=ti)zi) = (xp|U(ty — ti)|zi)-

4.1.2. Assumptions on the physical system. We will do all calculations for a system with
the Hamiltonian function and the Hamiltonian operator

P . B
H = — H = — = —— .
o +V(z) and o +V(z) zmam +V(z)

Say, for an electron on a line and in a potential V.

The Hilbert space A has distributional basis given by pure position states |a,,), a € R,
and the pure momentum states |b,,), b € R. The algebra of operators on H is generated
by the position and momentum operators T = x and p= £0d,. They act by

§|a‘p0> = a'|ap0>a ﬁ|bmo> - b'|bmo>-

i.e., in terms of the functional interpretation:

h i i
-0, = a0, and =0, er®® = p-er®l.
i
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4.1.3. Normal ordering and Weyl ordering. In general the Hamiltonian operator is ob-
tained from the Hamiltonian function by a (purely defined) quantization procedure which
requires some choices. Here we notice that the above Hamiltonian function is simple
enough, so that its quantization is independent of the choices.

Recall that the identification of functions on 7*C and D¢ is not canonical - it is only defined
canonically on the generators x and p. The way one assigns operators to functions, fi— f
is therefore not canonical, so the choice of H is not canonical in general.
The simplest identification is obtained by p'¢’ <> p'¢’, hence ’(\p"qj ) = p'¢’. This pre-
scription can be described by “p before ¢”, or “annihilation before creation”. It is called
normal ordering.
Another useful choice is the Weyl ordering which chooses symmetric expressions, say,

N 1

pg = 5(1’5(?+ ap).

All such prescriptions work the same on the Hamiltonian function if does not mix the
variables, i.e H = Hpinetic(P) + Hpotential (), as we have assumed above.

4.1.4. Lemma. For f € Clz,p| = Clq,p]

(@) (Dol flape) = €472 f(z, p),

(@%Mm=/@wwmwy

R
(©)  (YpoleT[zp0) = / dp eFPE-DHI@D)  (moq ).
R

Proof. (a) It suffices to check (a) for f = p‘a’. For the normal ordering quantization
the LHS is (Dmo| 0’77 |Zpo) = (Pmo|Tpo)-P'x? = e~ #P%-f(z,p). Now (b) follows

<yp0‘ﬂ$p0> = / dp <yp0‘pmo>'<pm0|ﬂxp0> = / dp e—%py_e—%pm_f(x’p)_
R R

In (c) the claim is that the RHS is the linearization of the LHS. At s = 0 both sides equal
§(z — y), applying 2|,— to (c) yields known claim (b).

4.1.5. Remark. (1) Our formal calculations are meaningful in the appropriate spaces of
distributions. For instance, the integral in (b) does not converge absolutely. The only
meaning of this integral is that it is a distribution on the zy-plane, hence absolute con-
vergence holds only for integrals

/ dz dy (2,y) - (Yo H|Tpo) = / dz dy dp ¢(x,y) - e" V=) .H(z, p)
R2 R3

where function ¢ is in the Schwartz space S(R?).
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(2) Claim (c) says that the the short time evolution of pure position states equals, modulo
(t” _ tl)Q,

(@por ' h0r ) = (2| U(E" = )|75,) = (2”7 "z )

= [y il =)= ("= H (a0

4.2. Localization of the amplitude on the time interval.

4.2.1. Insertion of a point in the time interval. For times a < b < ¢ and positions z, z,
the formula

(z,clz,a) = / dy (z,cly, b)-(y, b|z, a),
R

can be justified on the level of physics (any evolution from z at time a to z at time ¢ has
to go through some position y at time b), or mathematics (the states |y,b), y € R, form
a distributional basis of #).

4.2.2. Amplitude as an integral over possible intermediate positions. Now we insert N — 1
points into the time interval: t; = t; < ¢, < --- < iy = ty and we denote zy = z;,
zny = xy. Then

(wp, trlwi ti) = / doy- - doyoy [[ (o telosoiten).

N-1
R 1<k<N

(There are more factors in the product then variables of integration.)

4.2.3. Amplitude as an integral over possible intermediate positions and momenta. Sup-

pose that the intervals are of the same length: ¢, — t;, ; = e % According to the

linearization formula of the time evolution (4.1.5.2), modulo &* we have

Tk, t|Th—1th—1) = / dp elPe(@r —2p1) = eH (@1, p1)],
R
Therefore, modulo

(g gl ) = /

R

dxy - -drn_q / dpy- - -dpy e%[Zf[ pr(Tr — Tp—1) — £-H (Th—1, Pr)]
RN

(since [TV (ci +¢%) = [IY ci+e2 32V [l .icj+-- and &? SV behaves like 1).

4.2.4. Interpretations. The integral over all choices of k£ positions and £ momenta will be
interpreted as an integral over all curves (x,p) in 7*C. Then the phase of the integrand
will be viewed as an action for curves in 77C.
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4.2.5. An action for paths in the (co)tangent bundle. In a traditional manner we start
with paths (z,y) : [t;,tf]— TC into the tangent bundle. For these we choose a version of
the usual Lagrangian function on 7C as

When we will translate this into a path (z,p) in the phase space T*C, (using p = ym), we
get a version of the usual Hamiltonian function

1
H(x,&,p) = &-p— L(z,&,y) = gEp+ V(z).

Observe that for velocity and momentum curves (i.e., y = ), these are the usual La-
grangian and Hamiltonian of a path z in C.°

The corresponding action for paths in T'C (or T*C) is

S(z,y) /t Yt La(t), 60 4(1)) = /t Yt Sp— Vi) = /t Y dtip—H(z,é.p) = S(e.p)

4.2.6. The integrand and the piecewise linear curves in T*C. We can use the data
(te; Tuy Ps) = (Lo, ey tNy Toy ooy Ty D1, oo, PN ), Bl cOOK up a piecewise linear (discontinuous)
curve (z,p) . z.p.) © [ti;tg]— T*C, such that for ¢;,_; <t <y,

x(t) is a line from z_; to xy, and
and p(t) is a constant py.

We will call these curves the N-curves, and think of them as the level N approximation
of the moduli of curves in 7*C. Then the phase of the integrand is the action of this
N-curve

N
Tk — Tg—1

N
phase = Z pr(@e —zkm1) —e-H(zpor,pp)] = Y (e —ti [pkﬁ_H(xk—lapk)]
- k — tr-1

= S[(l‘, p)(t* ,CL‘*,I)*)]

If p would coincide with m-z this would be the formula for the action, en

4.2.7. The limit of the integrand. For a curve (x,p) in T*C, we define zy, p as values at
tk, and we get a piecewise linear discontinuous approximation (z,p), s, p.) of the curve
(x,p). We notice that the action is continuous in these approximations, i.e.,

N

Jim, Sl D)ol = Jim 30— i) o —

ZE Tl H(zggpi)]

- /tf dt p(t)-a(t) — H(z(t),p(t)) = Sz, p].

i

19However, our £ and H are functions on TCx¢TC and T*Cx¢T*C, rather then T'C and T*C.
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4.2.8. Now we have interpreted the approximate (modulo € = (¢; — t;)/N), calculation
of the amplitude (zy,tf|x;, ;) as the integral over all “N-curves” in T*C

~ iy — — e
<‘,'Ef’ tf|$la tZ>N lim dxl' . 'de—l / dpl . de eh[zl pk(xk ‘rk—l) € H(xk—lapk)]
N—oo RN-1 RN
i
= (0, D)oy €O T P)zep)]

“N-curves” (Z,P)(t,,zs,p,) B T*C

Finally, when we pass to the limit N — 0o, we get an exact formula for the amplitude

(zp;tslwiti) = lim dir. o gy eROEP)eap)]

N—roo “N-curves” (Z,p)t,,z,,p.) in T*C

To interpret it we imagine that the moduli of N-curves should converge to the moduli of
all curves in 7*C. This gives

(@, trlas, i) = d(z,p) erSorl

/(wap): [ti)tf]_)T*c! w(tl)zwh w(tf)::Bf

d(z,y) i,

/(w,y): [ti,tf]>TC, x(ts)=ms, x(ts)=xs

4.2.9. Remark. The action here involves curves (z,y) into TC (the same as (z,p) into
T*C), but this is different then just the velocity curves of curves into C.
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5. Example: ‘Relativistic free particle

Here we repeat the calculation of amplitude for a free particle, except that in the relativis-
tic setting we work in a larger space with auxiliary fields: an arbitrary parameterization
x (rather then the parameterization by time), and a worldsheet metric g. In terms of the
analogy with strings we are now working with the (relativistic!) Polyakov-type action for
particles.

20

5.1. Amplitude calculation. For two events?' z;, 7 in the spacetime, the amplitude of
x; evolving to x is

Z‘f i
(xf|lz;) = N- / Dx / Dg ewS®9,
T; metrics g

Here N is an unknown constant. The notation in the first integral means that we fix
an interval I = [1;, 7] and we integrate over all paths z : I — M with the boundary
conditions z(7;) = x; and z(77) = zy.

5.2. Gauge fixing (= Equivariant integration). Consider an integral [, f with a
symmetry group I', i.e., ' acts on X and preserves the function f and the measure on X.
Then one can try to define the equivariant integral as

r def —-
/ re oy,
A r\Xx

where f is the descent of f to the quotient X/I" (and one uses the quotient measure on
X/T'). Actually, if the symmetry is infinite, this is the only meaning one can attach to
the original integral [ </

Next, if one knows a section s : I'\X—X of the quotient map (in physics section is called
gauge), then one can rewrite the integral on the quotient as an integral fs(F\ x) f on the
section s(I'\XX') which is a subspace of X, hence less abstract.

5.2.1. Problems. One needs

(1) a “good” quotient T'\ X,
(2) the correct measure (the Faddeev-Popov measure), on the section s(I"\X).

20FIND SOURCE OR SIMPLIFY THE STRING VERSION
2 spacetime we will use terminology event rather then position, to emphasize that the difference
from the space position.
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5.2.2. The standard example. Let I' = Z act on X = R by translations and consider an
invariant (i.e., periodic) function f(z +n) = f(z), * € R,n € Z. Now the Z-equivariant
integration of a periodic function on R is just the integration on the circle I'\R = S*

[ i@ [ ates= [ s,

R

and in the last equality we use the standard (discontinuous) section S* — [0,1)CR.

5.3. Gauge fixing of the metric g and length as a Teichmiiller parameter (left-
over parameter).

5.4. Amplitudes.
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Part III. (Quantum) Field Theory
0. Intro

Text. Borcherds, Quantum Field Theory.

Quantum Field Theory is an extension of the formalism of Quantum Mechanics from
particles to fields.

0.0.1. Field theories. Mechanics deals with a particle like objects that are supported at a
point of the spacetime. At this point a particle information (mass, velocity, charge,...) is
a a vector.

Field theories deal with objects (“fields”) that are distributed over some space. So, a field
is something like a function on a manifold. More generally fields are distributions with
values in a vector bundle (or something like that).

The most obvious are the fields on the spacetime, say, the electric fields, etc. However,
there are also fields on the worldsheet, say, a metric on the worldsheet.

0.0.2. o-models. These are the worldsheet field theories where the main field is the evolu-
tion map z (or its component functions), viewed as a function on the worldsheet ¥ with
values in the spacetime (M, G), i.e., a manifold M with a metric G (which need not be
positive definite).

So mathematically this is the science of maps between manifolds. The ones of physical
interest are the ones that minimize certain action such as (i) volume or (ii) energy. In
mathematics such maps are called (i) minimal submanifolds, and (ii) harmonic maps.

The terminology o-model comes simply from the habit of denoting the source of the map
(the worldsheet) by X.

So, classical mechanics can be viewed as a o-model worldline field theory

0.0.3. Lagrangian view: Feynman’s path integrals. The key notion is the action S[z]. A
classical theory formulates physical laws by:

evolution x is a solution of the criticality equation, i.e., d,S = 0.

A quantum theory in ...

0.0.4. Calculus of variations. This is the mathematical framework for the classical La-
grangian approach, i.e., in classical physics the evolution is a solution of an EL-equation,
we say that it is a classical solution.

The classical worldsheet field theories (i.e., classical o-models), for strings and branes
will require calculus of variations for any worldsheet manifold . (See 1.1.3 for the case
dim(X) = 1.)
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1. Classical Field Theory: Calculus of Variations

1.0.5. Goals. Classically, physical laws are expressed in the Lagrangian approach by re-
quiring that the certain quantity S[x] attached to a possible evolution z of the system
is minimal. One calls S[z] the action of z, the criticality equation d,S = 0 is called
the Euler-Lagrangian equation, and from the quantum point of view the solutions of the
EL-equation are called the classical solutions.

Bellow we calculate the EL-equation in a standard special setting and in local coordinates.

1.0.6. The setting. Here, the field z is a map z : ¥ — M from a manifold (with boundary)
3 to a manifold M. The action S[z] is an integral

S[a] & /2 dr L(z(r),i(r),7) |

of a function L(z,v,7) which is a (possibly X-dependent) function of the position z in
M, and velocity v € T, M. So the Lagrangian L(x,v, ) is a function on TM x 3.

1.0.7. Reduction to the standard local setting. The criticality equation will be local in 3,
and we calculate it in local coordinates 7° on an open piece YCX, which we identify via
the coordinates 7! with a coordinate box YCRP. In the process, the measure dr on X
becomes a multiple y(7)-d7r%- - -d7? of the standard measure on XCRP, and we incorporate
it into a new Lagrangian L(z,v,7) = u(7)-L(z,v,7). We do all our calculations in the
setting of a box X and the corresponding Lagrangian L = u-L.

1.0.8. EL-equations. In the above local coordinates the criticality equation becomes

(1) on X, there are ingredients L, and L that come from the non-dynamical depen-
dence on the field = (dependence of L on x, no X-derivatives), and the dynamical
dependence on x (dependence of L on the Y-derivatives of z):

d

(2) on 0¥ we have the Von Neumann Boundary condition

Lo = 0.
on

1.0.9. Mathematical analysis. Here we really do calculus in topological vector spaces, but
I will omit the relevant technology.

1.1. Variation % and pointwise variation % of the action.
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1.1.1. Action. We are interested in the critical points of a functional S[z] on the space of
all paths z : ¥ — M in a manifold M. We will call S[z] the action of the path z, it will
be an integral

S[a] % /EdT L(z(r), (7). ) |

of a function L(z,v,7) which is a (possibly time dependent) function of the position z in
M, and velocity v € T, M. So the Lagrangian L(x,v,T) is a function on TM x 3.

1.1.2. Variation ‘;S and pointwise variation 5 (t) The variation means just the differential

def T /Y00
85 4,8 € TC™(Z, M).

Its distributional version is the variation with respect to the value of z at a fixed point
t € ¥. For a tangent vector v € T, M we consider the variation of S[z] when one moves
x by a distributional path u = 6;(7)-v concentrated at the point ¢t € X, so

0S5 et 0S5
(53:(t)v Oz

0(T)v = (dgS) d¢(7)w

1.1.3. Local situation. For simplicity we will calculate in the local situation, so X will be
a rectangle [[] IxC RP for some intervals I, = {a; < 7" < b;}, and the target M will be
a vector space. Now

Sla] = /E dvol(r) L(z, 3, 7) = /Il---/IpdTl---dTp L(z(r), d(r), 7).

The dot denotes the derivative with respect to 7. So, &(7) : T;3X — Ty M, ie., & is a

section of z*T'M and in local coordinates it is a matrix ‘;‘”

Bellow we calculate the criticality equation (Euler-Lagrange equation) of this situation.

1.1.4. Theorem. The variation (differential) of the action S[z] = [ dr L(z(7),&(r),7),
in the direction of u € T,,(C®(X, M)) = C®(X,M)), is

—u— Z [ H/dT )L oo (x,2,7) u(T)]ZZZ]] + /sz [Ly(z,2,7)— %Li(x,i‘,T)]-u

arJ
k#j

. d .
= /az do Lg%(x(a),x(o),a) cu(o) + /EdT [L, — ELi](x(T),x(T),T)] - u(T)
for the normal vector n to 0X.

(b) The EL-equations (criticality equations) are

L, = %(Lj—f) on ¥, and Ls: =0 on 0X.
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(c) The pointwise variation at ¢ € 3 is the integral kernel for the variation operator ‘;—‘i

5S d
- L - <
dx(t) = dr

Ll(x(t),#(t),8) + Owon - Los (2(t),2(),1), teX.

Proof. (a) The variation %2 of S at = and with respect to u, is the differential

6S def d

By differentiating under the integral and using the chain rule this becomes

= // dr Ly(x, &, 7)u + Ly(z, &, 7).

this is

- //dTl---dT” Lowt + Law-2%
ori OTJ

It remains to use integration by parts for the “dynamic” ingredients 2 o7
theorem)

0 . i
:/EdT (L, — 577 L(;’ﬂ:,] “u + Z H/dT L;:] (z,2,7) u(r)|5=g -

J k#j

d
oo St+ew = [ dr T Lz + i+ i)
I de

Since & is a vector 2%,

~ (i.e., the Stokes

J

(b) The equation on X is obtained by using all u’s supported in the interior of ¥ and
the continuity at the boundary. The equation on 9% is then obtained by varying the
restriction of u to the boundary. In (c),

@&@@vz/dw@u@@@mwmw lL“[ L L), (), )] 8o

% on

1.1.5. Remarks. (a) The variation with respect to z consists of two parts, due to the
appearance of = as a non-dynamical variable (i.e., the appearance of the field z itself
without derivatives), and as a dynamical variable (i.e., the appearance of the derivative
& of the field). The non-dynamical term of the variation has no time derivative, while
the dynamical term has time derivative with a minus (since the dynamic variable causes
integration by parts).

(b) In general, ¥ will be a manifold with boundary and a Riemannian metric that will
give the measure used to define the action S. The boundary term in the variation formula
will disappear in some cases:

(i) If ¥ is a closed manifold and L = L(z, %), i.e., L(z, &, 7) does not depend on 7.

[ ]
e (ii) If we consider maps = with the fixed values on 0.
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Here, (i) is clear, either by invoking the Stokes theorem or its proof (integral S[x] over
> can be calculated as a sum of contributions from pieces Y, on which one has local
coordinates. If we calculate the contribution to (d,S)u from all pieces, the boundary
contributions will cancel. The second case is also obvious since u = 0 on 0X.

(c) We can think of £ = % as a vector 2% or a matrix %. Then the criticality equations

. dr oTJ
can be written as

0 0 .
La; = %L:Tz] L:E/J, = %Lgf—lj—‘, 1.€.,,
the variation with respect to the value of x at 7 is
0S5 gef 0 .
m— (dzS) 6- = [Lz — %L% (z(1), (1), 7),
and if we vary only the y coordinate of x at 7
San(r) (dgS) 0, = [Lgn — %Lgi?](x(T),iE(T),T).

1.1.6. The case S(z) = [* L(z(t)) dt.

t1

1.2. Borcherds Formalism. Higher derivatives.

The difference between Lagrangians and EL-equations is that a Lagrangian is to be inte-
grated, so it is rather a measure then a function. (7).

2. Perturbative expansion of Feynman integrals by Feynman graphs

This is one basic idea in quantum field theory.
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Part IV. Free strings in a Minkowski space: actions and classical solutions
0. Intro

We consider the area action for free strings as an obvious generalization of the length action
for the worldline, Its classical solutions are the minimal submanifolds. It is geometrically
reasonable but technically impractical since the square root makes it complicated for
quantization.

1. Kinetic energy for a non-relativistic strings propagating on a cylinder

22 Here, tube has canonical coordinates 7° = (time) and 7' = @ (angle). They give local
charts and a global metric

g= gp & (ct%)? + (R7')?
which is lifted from R?. Here, R is the string radius (7).

In the non-relativistic setting, time and space are sharply separated. This product struc-
ture forces the worldsheet to be topologically (and metrically?) a cylinder.

2. Area action for free strings (“Nambu-Goto action”)

We list here the area action for free strings as an obvious generalization of the length
action for the worldline, and we notice its mathematical significance. It is geometrically
reasonable but technically impractical, the square root makes it complicated for quanti-
zation.

The volume action for maps x : X — M from a compact oriented manifold with boundary
> to a manifold M with a metric G, is

Sz]% —T / dv.
z(X)

Here, dV is the volume of a piece of z(X), calculated in M.

The critical points of this action are called the minimal submanifolds of M (of shape X),
say geodesics, minimal surfaces etc.

2.0.1. Remarks. (1) Actually, we need to restrict to the maps x such that z*G (or —z*G),
is a positive definite metric on X. (2) Moreover, if x is not defined on 0¥ we need to ask
that the integral converges.

2270 BE DONE
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2.0.2. String tension constant T. Tt has to appear to make the action dimensionless (for
instance, we need to exponentiate the action for the path integrals). For that,

dim(T) = volume™ = length™ 4m®).

2.0.3. Question. Are the energy and volume actions always physically equivalent ?

The question is not precise. Say, the energy actions seem to require an additional field:
the metric on the source, so that we can measure the speed, i.e., the size of velocity.

The answer seems to be positive for particles and strings!

2.0.4. Formulas in coordinates. We will denote local coordinates on ¥ by 79, ..., 74m(®),

Let 8, 8,:. Since 7 is a vector z = (z*), its partials are 0;x o dz(0;) = Ozt 5.
Lemma. (a) The pull-back metric g = 2*G on X is
i = aszajrr = le . 8,-3;“ . 8j.’13u.
(b) The induced volume on ¥ is
dV = drdrt- - -drimE) -/ —det(gi;).

(Actually, the sign under the square root appears if we are dealing with a metric G on M
that has Minkowski nature.)

(c) The action is

Sl % /E drodrt. . .draim®) \/%: -T /2 drodrt. - -dr¥™®) L(i);

for the Lagrangian with one, purely dynamical, variable z

L(@)= ~T - \/~det(gy) = ~T -/~ det(G,, - dardjan).

Proof. (a) gij = (2*Q);; def( *G)(0;, 0;) equals

%, 0
. ) = . = = I s Y
G(dz 0;,dz 0;) = (dz 8,)G(dx8 )= Oz - 8 r = Ozt Xk G8 i X = = Gy - Ozt - 0;a".

(b) The change of variables in the area integral, corresponding to the parameterization
z, gives dV = drdr!- - -dri™®) . | /—det(g;;). Actually, the sign under the square root
appears if we are dealing with a metric G on M that has Minkowski nature.

2.0.5. Minimal submanifolds. We say that = or z(X)is a minimal submanifold of M if z
is a critical point for the area action.

We’ve got nothing to say about this except that it is a complicated subject:
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Corollary. ElL-equation is

&ru Z 0; Lo,oun = Z a—LW

2.0.6. The case when X is a surface. Consider an oriented surface with boundary ¥ (a
smooth 2dimensional compact manifold with boundary). The strings with evolution of
type X are the maps x : X—M.

The area action of the map z will be the area of the image z(3X)C M with respect to the
metric G on M,

S[z]¥ -1 / dA.
a(®)

The local coordinates a surface on ¥ are 7%, 7!; and
b —det(gi]—) = (901)2 — Goo'g11 = (30336';81%)2 - (60$)%; (81$)éa

e the action is S[z]% — T [y drdrt-\/—det(gi;) = —T [ drdr'-L(z),
e and the Lagrangian is L(z) = —T \/(aoxé(?lx)Q — ()% (012)%.
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3. Polyakov action for free strings (kinetic action with added worldsheet
metric)

In this section we calculate the criticality equations for the Polyakov action for strings
in a manifold with a “constant” metric. For later use we restate the results in special
coordinates (“conformally flat coordinates” and “conformal gauge”).

3.0.7. Polyakov action. By the kinetic energy action of a map ¥——M we will mean the
integral over ¥ of the velocity squared. This requires metrics G, g on both M and ¥ in
order to measure the size of velocity:

. —||dz||?
Sla, g £ T - / av lley 2”0’9.
()

More precisely, we will see that this works precisely for strings, i.e., when dim(X) = 2.
For other branes one needs additional (massive?) terms in the action.

3.0.8. Comparison with the volume action and criticality in g. Here, we need one addi-
tional field, the worldsheet metric g. However, we will find that this new degree of freedom
disappears classically, i.e., at the criticality of the action S[z, g] in g. This criticality equa-
tion expresses ¢ in terms of z, and when we substitute this formula for ¢ into S[z, g|, the
S|z, g] reduces to the area action S4peq|z]-

3.0.9. Criticality in . The solutions of the criticality equation in z are classical mathe-
matical objects, the harmonic maps.

3.0.10. Massless strings. This action is quadratic in the derivative dx and it allows for
massless strings. This is important since we are most interested in the massless case.
The appearance of massless objects (gravitons) is one of the key attractions of the string
theory.

3.0.11. Classical solutions for the Polyakov action. The main result of this section is
summarized in the following theorem which is proved in lemmas 3.3.1 and 3.5.3 bellow.
Theorem. The classical solutions for the Polyakov action are the pairs (z,g) with

e g conformal to the pull-back metric z*G and

e r a harmonic map for the metrics G and z*G.

3.0.12. Symmetries. Besides the usual ones (automorphisms of ¥ and (M, G)), Polyakov
action for surfaces (only!) has additional conformal symmetry.
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3.0.13. Stress tensor T. Here it appears just as a name for the (normalized) variation in
—1
g—. So,

T = 0 is the criticality equation for the non-dynamical variable.

In the remainder, i.e., starting from the subsection E.1, we just restate the above com-
putations in terms of special coordinates on X.

3.0.14. Conformally flat complex coordinates. To a metric g on ¥ one can associate a
complex structure on ¥ and then it is convenient to calculate in terms of a local holo-
morphic coordinate z. We say that such complex coordinates z is conformally flat for

qg.

3.0.15. Conformal gauge. We notice that in the local computations it is legitimate to
assume that we are in the Conformal gauge, i.e., that g;; = d;;.

3.1. Polyakov action. Historically, it was discovered by two groups , . and , ; and
popularized by Polyakov.

The setting consists of a metric spacetime (M,G) and the worldsheet manifold with
boundary Y. There are two fields, maps = : ¥ — M and worldsheet metrics g. Let
s = dim(X).

The action of a map ¥——+M and the worldsheet metric g is the integral over ¥ of the
velocity squared

e —||dz][¢ T T
S[=, 4] dsz-/ ay —%lles ——/ dV dz - de = —= / dr°- - -dr® L(dz, g),
z(X) 2 2 z(X) G,g 2 n

for the Lagrangian

L(da:,g)d:ef — det(gpq) - aﬂ.xéaﬁ.x g7 = \/—det(gpq) - Oix"-0;3"-G - g7

3.1.1. Remarks.

(1) We will do computations in general, but we will see that the above action only
works when ¥ is a surface, i.e., for strings.

For other branes it may be that one needs an additional massive term, We

know that this is what happens when dim(X) = 1, i.e., for particles (3.3). Though

massless particle formally makes sense, there are no classical solutions (3.3).

(2) At each point a € ¥, the square size —(da:c)é’gd:ef — daxG- d,z, of the differential
9

*

dox € Homg ([T, %, Ty(q) M], is measured with respect to the bilinear form g} ®G ()
on Homg [T, %, Ty(q) M] (see lemma C.1.2.e).

(3) The brane tension constant T appears to make the action dimensionless (for in-
stance, we need to exponentiate the action for the path integrals).
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(4) The minus sign appears because ||dz||; , < 0 for Lorentzian G.

3.1.2. The use of local coordinates. We symbolically write the integral in local coordinates,
as if there exist global coordinates. The meaning is that in reality the integral over X
is a sum of contributions calculated in local coordinates. The use of local coordinates
is convenient since our calculus of variations formulas have been deduced for the action
written in local coordinates.

3.1.3. Why do we need the metric g ¢ (1) If g is conformal to the pull-back metric g =
¢-x*G, then

_ dim(%
ldo|[& pore = B(a) ™" [|dat |G = %(o)

For the last equality see lemma C.1.2.e, or directly, observe that if = is regular at a, then
dot © T,X— Tyo)M, viewed as a map to its image, is an isomorphism of vector spaces
with inner products. so it is essentially the identity on 7,3.)

(2) In particular, the obvious choice ¢ = z*G is not good for measuring speed since
|da2]|g e = dim(Z).

(3) However, the question of
For a given . and (M, Q), find maps ©—+(M,G), harmonic for G and z*G.
is still interesting. It is quite different from the standard question on harmonic maps:

For given (X, 9) and (M, Q) find all harmonic maps x : ¥ — M.

3.1.4. The signature of the metric g. We will use

e Lorentzian g for local reasoning. In particular, to see that Polyakov action reduces
to the area action at the criticality in g.

e Euclidean g for global reasoning. Actually, on a topologically non-trivial (i.e.,
g > 0) surface ¥ there are no non-singular Lorentzian metrics (it would give a
decomposition of TY into two isotropic line bundles).

So we will eventually be interested in Riemannian g, though Lorentzian metric is physically
natural (remember that we used the Lorentzian metric 2*G for the area action). The
justification of the transition is as usual through the Wick rotation (1.3).

3.2. Symmetries of the action. We say that two metrics ¢’, ¢" are conformally equiv-
alent if ¢" = ¢-¢' for a positive function ¢. Besides the usual symmetries, in the case of
strings, i.e., when Yis a surface, the Polyakov action also has conformal invariance:
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Lemma. The symmetries of Polyakov action S|z, g] contain

(1) Spacetime symmetries. The Poincare group Py, consists of diffeomorphism P of
the spacetime M that preserve the metric G. (So, P € Py moves x to Poxr and
it fixes g).

(2) Reparameterizations. The group Dif fo(X), of orientation preserving reparame-
terizations of ¥.. (o € Dif fo(X) moves (x, g) to (zoo™!,0%g).)

(3) Rescalings of g. If dim(X) = 2, one also has the group C*® (X%, Ry of conformal
symmetries. A positive function ¢ € C*(X, Ry¢ moves (z,g) to (z,¢-g). This
preserves both the action and the Lagrangian.

Proof. (c) Since the volume is the square root of the determinant of the metric g;;
(dV)gg = pdm(=)/2 . (dV),, while (4g)? = ¢'g" gives (dx)é,d),g = (b_l(dx)QG,g.
So, L(i, ¢-g) = ¢¥™®)/2-1. (i, g), and one needs dim(X) = 2 for invariance.

3.3. Variation with respect to the inverse metric.

3.3.1. Lemma. (a) For the non-dynamical variable g,

s T 1 1 2
ik (= det(9rs))? - [0r5 07,7 — 50i57(dat) )

(b) Criticality in g='. If dim(X) = 2 then EL-equation says that g is conformal to the
pull-back of —G, i.e., g = ¢-2*G for arbitrary ¢. (If dim(X) # 2, then the criticality in
¢! has no solutions at all!)

(c) If ¥ is a surface, at the criticality for g Polyakov action reduces to the area action:

SPoly[maQS'(_x*G)] = SPUly[xa —ZU*G] - SA'rea[x]-

Proof. (a) Since g~! is a non-dynamical variable —53‘?;- equals
T 0 1
o _ T$)\~3 ) . oPd
Lyi; = > 97 [(—det(g™)) 8Tpr87qx "]

T 1 rsy)—32 0 rs rs\\—i
= 5 [ (det(g™) ™ - 5 5 (— det(g ))(da)Gry + (= det(g™)) "2 0rz - 0r; 2]

With the formula for the derivative of the determinant (lemma C.1.3.b), this is

= AU (g 50,5 — 1 (= det(g”) ™" - (= det(q™))gig (du)isg)

T _d t rs % 1
_ _% [anxéanx— Egij'(dax)é,g]‘
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xr 2 .
(b) Criticality equation % = 0 says that anxéazj — ( 2)G,g ij, i-e.,
2
g = —— - (—2"G).
—[ldaz ]2
So g is conformal to the pull back metric ¢ = ¢- 2*G. Now, by 3.1.3, Hda:c||2G,g =
|da||% pore = #(a)~'-dim(X), hence ¢(a) = Hda:c2||2G,g = ini((az)). This shows that ¢ is

arbitrary when dim(X) = 2, and that there are no solutions at all when dim(X) # 2.
(c) At the criticality, g = ¢-(—2*G) for some ¢. If X is a surface, factor ¢ is not a problem
since Polyakov action is conformally invariant. So,

T

Sla, ~¢4°G) = Sla,—aG) = —3 [ o Wl

However, for ¢ = —2*G one has ||dz||; _,.¢ = —dim(X) = —2 (see 3.1.3). Therefore,
S|z, —2*G] = —TdmE) fz(E) dV = Saction|Z].

3.4. Stress tensor T'. This is the normalized variation of the action with respect to the
non-dynamical variable g !

08

2
- T-\/— det(grs) ogt

Lemma. (a) In coordinates
—2 oS 1
— = 0,1-0r.0— =gii-(d.x)% .
T-\/— det(g,s) 09" e 2g]( x

(b) The stress tensor T'(x,g) is a quadratic differential on ¥, i.e., a family of symmetric
bilinear forms on tangent spaces. (Just like metric!)

def
Tij(m)g):e

Proof. (a) has been calculated above. (b) At a point a in X the stress tensor T',[z, g] is
related to changing ¢g=! = (¢"*) at the point a, so it is a linear functional on the vector
space of possible values of g~! at a. The value of g~! at a is a symmetric bilinear form
(g71)q on the vector space T;%. However, (g '), lies in the symmetric part of the dual
of Hom[TYX®T:¥%, C], i.e., in S*(T,X).

3.5. Variation with respect to the map z (harmonic maps).

3.5.1. Criticality in x (harmonic maps). The maps that satisfy the criticality condition
in variable z are called the (G, g)-harmonic maps.

We will only consider the case when M is a vector space and the metric G is constant.
In the case when ¥ is a surface, the criticality equations simplify in special coordinates
— one can choose local coordinates in which metric ¢ is conformal to the standard metric
on R?. Instead of doing this for Lorentzian metrics g that we use here, we will do this
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later (see 1.4), in the setting of Riemannian metrics g that we use in order to quantize
the strings.

3.5.2. Laplace operator. We will use the Laplace operator for the metric g on X,
V2 ¥ 49,0, = g78,0;.
3.5.3. Lemma. For the purely dynamical variable z

0S ij/
— = \/—det(gm)-vg(xu) + anxp . 8Tj [gm _det(gm)]

oz
= Vv~ det(QTS)'V?;(xu) + Oz - 0 (97 /= det(gr,)]-

Proof. Since z appears in the Lagrangian through dx,

so we first calculate

0 0 T+/— det(g,s)
—a L= . - 3y 0y1Y Gy g™
055" 0 (%) ? ’
T/~ det(g.e . . T+\/—det(grs v
= S IVEM) (90 G + 0,00 Gyeg?) = YS9 0.6

Because the metric G is constant, 0,2"-Gp = 0p(2”-G ) = 0px,, SO

= IV 9o, g = T/~ det(gre) - 70,1
Then,

0S 0 . )
<~ 5 o7 [_T\/ - det(QTS) : g]p-apl‘“] =T- aj[apxu'g]p' VvV — det(g,s)]
J

dxt

and
1 6S . .
T 5 = 0;0px,-g'P A/ — det(grs) + Opx, - 0j(¢°P/— det(grs)].

So it remains to recognize ¢’?9;0, as the Laplace operator V for the metric g on X.

3.6. Relation between metrics and complex structures on surfaces. Let us recall
the relation between metrics and complex structures on surfaces from the section IX.E.

On an oriented surface (X, or) a complex structure J is the same as a conformal class of
Riemannian metrics g. We will use expression conformally flat to invoke the above relation
of of a metric g and a complex structure J (or any local holomorphic coordinate z). In
this way some metric questions become questions in holomorphic geometry (i.e., some
computations for a given metric g can be done using the associated complex structure .J).



7

We will compute the stress tensor T = T'[z, g] (i.e., criticality in g), in terms of a holo-
morphic coordinate z conformally flat to g. In particular, at the criticality in = stress

tensor T will reduce to one holomorphic function T'(z) oo T(0,0).

3.6.1. Computations in conformally flat coordinates. Consider a Riemannian metric g
on an oriented surface (X,or) and a conformally flat local holomorphic coordinate z.
The corresponding real coordinates are 71 = Re(z),72 = Im(z). with real . In these
coordinates g has a very simple form (lemma IX.E.3.1):

(1) gij = iyjw, ¢ = 6wl forw= g; € C°(Z,Rsy).
92 9oz _ (0 5w g9 g\ _ (0 2w _ 9g. —
(2) (gZz _gzz> - (%w 0> and <gZz 922) - (2/&) 0 ’ w = 29zz -
2¢(0,0).
(3) The g-Laplacian is Vzd:ef 999,0; = 100.
(4) The velocity of a map (3, 9)—(M,G) is (dz)g, = 2 Ox ; Ox.

3.6.2. Stress tensor T in conformally flat coordinates. The definition T(:zc,g)d:ef —

2 . 55*?1, translates in any local complex coordinate z to
T-y/det(grs) 99

08

2
 T-\/det(gr,) 097

def

T, = etc.

Lemma. (a) In any local complex coordinate on ¥, the stress tensor is given by

1 = 1
T,, = axéax — 59z (dx)é,g = T; and T,; = &céax — 592 (dm)é,g.
(b) In conformally flat coordinates T(z)d:ef T, is holomorphic, T(Z)d:ef T is antiholo-
morphic, and T,; = 0. Actually,
T(z)dzef T, = 8xé8x, i’(i)d:ef T = 5:5(-;(%.

(c) Moreover, if (z,g) is a critical point of the Polyakov action S|z, g] with respect to
z (i.e., z is (g, G)-harmonic), then T'(z) = T(z,g9)(¢) = T,..(z,g) is a holomorphic
function of complex coordinate z (which is conformally flat for the metric g).

Proof. (a) T is a quadratic differential, so it transforms the same as a metric, i.e., its
ij-coordinates transform to the z, z coordinates the same as 0,®0; transforms into 0®0
etc. So, the formula above is the same as the basic formulas (lemma 3.4)

1
Tij(z,9) = 3i$é3j$ — igij'(dax)é,g'

(In general, ¢z; = 7z,.)
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(b) If our complex coordinate z is conformally flat for g then g,, = 0 (lemma IX.E.3.1),
hence

T(z) def T, = 8xé8x - %gzz (daz)é,g = Bxéax and T’(z) def T..= T, = T(z2).

Similarly, T',; = 8xé5x — 5922 (dz)% , vanishes since lemma IX.E.3.1 (parts b and d),
says that

gzz'(dx)é,g =

| &
IS

Or-0x = 20z - 0z.
G G

(c) The criticality in & means that z is harmonic for ¢ and G, hence for g, and G, and
this implies that 0z is holomorphic. So, T'(z) = T(z,9)(z) = 6:1:(-;833 is holomorphic.

3.7. Conformal gauge. By a gauge we mean the passage to a subspace Fg,4¢ 0f the the
space F of all fields, which generates all of F under the action of the group of symmetries
of the action (the gauge group).

3.7.1. Conformal gauge. In our cause the space of fields is a product F =
Map(Z, M)x Metrics().

Here, we will assume that the metric g is the standard or fiducial metric g5 = g with

Gij = 0;; for the global coordinates 7!,7% on X. In other words we pass to the subspace
def

Fgauge = Map(Z, M) X {gSt} of F.

The lemma IX.E.3.2 says that for any metric g on a surface one can locally choose coor-
dinates so that in these coordinates g is the fiducial metric gs. So we are in some (at the
moment hazy) sense, looking at the “X-local properties of the path integral”. We can also
restate the lemma as: locally the choice g = g4 is a gauge (since the change of coordinates
on ¥ is the part of the symmetry group of the action). So, locally the conformal gauge
really is a gauge.?

We will calculate in terms of the corresponding complex coordinate z = 7! + i7? which is
conformally flat for g.

3.7.2. EL-equations in the conformal gauge. Since the criticality equations are local, it is
quite legitimate to compute the criticality in x in the conformal gauge g = g,;. The result
is

23To use the conformal gauge globally one would need to deal with the remaining global problem of
patching the local contributions.
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Lemma. In the conformal gauge (i.e., when g = gy),

(a) The criticality condition in variable = just means that the component functions z, are
the harmonic functions in the classical sense.

(b) The criticality condition in g, calculated at g is
0x-0x = 0.
G

Proof. (a) Recall that (for Riemannian g)

148 :
Tw(x,g) = Vgxu-\/det(grs) + Or,xy - O [97P4/det(grs)]-
Since g is constant and det(g,s) = 1,
1 08
T §zh
with the last line using the complex coordinates.

(z,9) = V%LL = (0" + 822)36” = 00z,

(b) The criticality condition in g is the vanishing of the stress tensor, and by 3.4(b), this
reduces to
8xé8:r = 0.

(Recall that we have extended G to the complexification in a C-bilinear way, hence even
if G were positive this would mean that 0G = 0.)
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Part V. Free strings in a Minkowski space: quantization
0. Intro
1. Polyakov path integral

In this section we only formulate the meaning of the path integral for the Polyakov action.
This involves

e passing from the physically interesting Minkowski formulation to the mathemati-
cally more convenient Euclidean formulation by Wick rotation.

e Definition of the integral as an equivariant integral for the gauge group G.

e The philosophy of the computation of equivariant integrals in terms of a gauge.

e Computations in the Conformal gauge.

We will not make any conclusions here from the path integral. So the physics is postponed
to the next section in which we study the quantization of a free string in the operator
formalism (deformation quantization).

1.0.3. Path integral. We are interested in the path integral

/ DzxDg e#Slzd]

over Lorentzian metrics ¢ on an oriented surface > and maps = from ¥ to the Minkowski
space M. However, we will define and study it using the its Euclidean version:

e Mathematically, we can define such integrals only by analytic continuation of
the corresponding Euclidean path integrals. This procedure is called the Wick
rotation.

e The Euclidean version is related to algebraic geometry since oriented Riemann
surfaces are complex curves.

1.0.4. Use of the complex structure associated to a metric g. Our first step is to associate
to the field g (a metric on a oriented surface ¥), a complex structure on ¥ (E.1). In
terms of a local holomorphic coordinate z (such coordinate is said to be conformally flat
for g, we will recalculate the criticality equations for the Polyakov action. The criticality
of z (harmonicity for G, g), turns out to be the standard harmonicity for this complex
structure, i.e., the requirement that 0z is holomorphic. We have formulated the criticality
in g as the vanishing of the stress tensor T'[z, g]. In this setting, at the criticality of z we
find that T'[x, ¢] is given by one holomorphic function T'(2).

1.0.5. Computation of a path integral using a gauge. On the space of fields F we have
the action of the symmetry group of the action, called the gauge group G. It consists of
reparameterizations and rescalings of the metric: G = Dif f(X, or)xC® (3, Rsy).
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The meaning of the path integral over F is really the integral over F/G. A gauge is a
subspace FyquqeCF of fields such that G-Fyauge = F. It allows rethinking the integral as
an an integral over Fyuuge/Ggauge Where the residual gauge group Ggauge is the stabilizer
of Fyauge in G.

1.0.6. Conformal gauge. In our case the space of fields F = Map(Z, M)x Metrics(X) is
a product of maps and metrics, and the gauge group consists of reparameterizations and
rescalings of the metric: G = Dif f(X, or)xC*® (X, Ryy).

The conformal gauge is obtained by fixing the metric g to be the standard metric gz. This
in particular fixes a complex structure on ¥. The residual gauge group is then (isomorphic
to) the group of conformal automorphisms of ¥.

1.0.7. The criticality equations in the conformal gauge. The condition in x is that the
component functions z,, are (ordinary) harmonic functions (for the above complex struc-
ture on ). The condition in g, calculated at g is 8xé8x = 0 (again, 0 uses the fixed

complex structure on X).

1.1. Some comments. 2*

1.1.1. Quantum corrections. At the moment we will be concerned with local computa-
tions, so ¥ will really be a disc. We will consider the amplitude for a cylinder, and later
we add the amplitudes for topologically non-trivial evolutions (quantum corrections or
instanton corrections).

1.1.2. Scattering amplitudes (S-matriz). One can really calculate the amplitudes only
when the sources are at infinity, i.e., 0z(X) is on OM. However, by conformal transforms
a tube going to co becomes a disc without a point. So, the consequence for us is that X
is not a manifold with boundary, but a compact surface with a few points removed!

An incoming or outgoing string is then represented on an infinite incoming or outgoing
tube by a vertex operator.

1.1.3. Open and closed strings. Any theory with open strings must contain closed strings
since an open string can have an evolution in which ends join. Another way to say this:
suppose that an open string splits into two for a moment and then they again join. The
evolution surface is an annulus, so if we slice it differently (i.e., measure time in a different
way) it can be seen as an evolution of a closed string.

1.1.4. Free brane. Really the only example in this course is the free brane, i.e., free particle
or free string.

24Where should these comments be?
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1.2. Polyakov path integral in Euclidean setting. We will consider the path integral

/ DzDg e #5d]

over maps  : X—F and metrics g on X. It will be Fuclidean, in all respects: both
metrics G on E and g on ¥ will be Riemannian and the integral will be Gaussian rather
then oscillatory.

1.3. Wick rotation. The Wick rotation from the Minkowski space M to the Euclidean
space E will be a change of coordinates

2% ..,2PYon M — 2%, ...,2P on E, given by 2P = a9,
This will change the metric from Gy = —(2°)? + 3¢ (2%)> on M, to Gg = 3.7 (%)% on
E.

One can think of M and F as two real forms of M¢c = C* = Es. Here C" comes with the
quadratic form G¢ = Y 22, and two real subspaces have the induced metrics: £ = R"
has the Euclidean metric gp = .7 (27)?, and the Minkowski space M = iR®R*' has
the Lorentzian metric Gy = 7= Gy = —(2°)2 + 327 (%)%

1.3.1. Path integrals. The physics is interested in the maps to M, but the mathematical
treatment will be to calculate with the maps to £ and then use the analytic continuation
of formulas. The above Euclidean path integral is precisely the Wick rotation (or analytic
continuation) of the Minkowski path integral.

1.4. Gauge fixing: “the conformal gauge”. We will interpret the path integral as an
equivariant integral for the action of the gauge group (reparameterizations and the Weyl
rescaling)
def .
G = Dif fo(2)xC*(X, Rso),

on the fields (z, g).

1.4.1. Integration using a gauge. The gauge group G acts on the space of fields F, and
our integral is really on the quotient space F/G. A gauge means a section. Here it means
that we choose a subspace Fyqyq. CF which plays the role of a section of 7 — F/G. This
means that Fy.uge surjects onto the quotient F/G, hence

f/g (i ]:gauge/ggauge

for the groupoid Gyqyge Of residual symmetries of Fyqyg.. We call this groupoid the residual
gauge freedom. Of course we want to have a situation where it comes from the action of
the stabilizer subgroup G r,4.4CG of the chosen gauge Fjauge.
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1.4.2. Conformal gauge. (See also 3.7.) In our cause the space of fields is a product
F = Map(X, M)x Metrics(X) and by the conformal gauge we mean the the subspace of
fields Fyauge = Map(X, M)x{gs:}, where we fix a complex structure and a holomorphic
coordinate z on ¥, and gy is the standard or fiducial metric g5, = g with g;; = 6;; for the
corresponding real coordinates 7' = Re(z), 72 = Im(2).

This is the same as choosing global real coordinates 7¢, so we are at the moment really
assuming that ¥ is a disc! So we are in some sense looking at the “Y-local properties of
the path integral”.

1.5. Residual gauge freedom. We will see that the choice of the conformal gauge

reduces the symmetry from the gauge group G to the group of conformal automorphisms
Conf(%,9,0).

1.5.1. Conformal maps. A diffeomorphism ¢ € Diff(X) is said to be conformal for a
metric g if ¢*g is conformal to g. These form a subgroup Conf(X,q,0)C Dif f(X)C G
of the gauge group.

1.5.2. Lemma. (a) Holomorphic automorphisms ¢ of ¥ are conformal.

(b) The projection G—Dif f(¥) identifies the residual gauge freedom Gy, . with the
group Conf(X,9,0) of conformal maps.

Proof. (a) For a local holomorphic coordinate z, ¢(z) is another local holomorphic co-
ordinate and (¢*g).; = g¢(d¢d,dpd) = ¢(¢'d,¢'0) = |¢'|>g.z. Similarly, (¢*g),, =
(¢)%:9:: = 0= (¢"9)z, hence ¢*g = |¢'|>g.

(b) Once we have fixed the metric to be g, there is still a residual symmetry given by the

conformal automorphisms ¢ of (3, g, 0). For such reparameterization ¢, ¢*g = wy-g for
certain function wy > 0 (the conformal factor of ¢. So (¢,ws™) € G fixes the metric g.

TO THE END OF THIS SECTION IT IS HAZY GENERAL STRATEGY
SEEMINGLY RELATED TO THE NEXT SECTION, SO
GO TO THE NEXT SECTION FIRST

1.6. From path integrals to operators. Abstractly, if we have an action functional
Sly] on the space of fields Y, we form the (Euclidean) path integral

/ dy ¢S,
Y

also called the partition function.



84 IVAN MIRKOVIC

1.6.1. Path integral quantization of functions on the space of fields. The path integral
quantization of a function F on Y consists of the associated correlations functions.

First, we define the expectation of F (the expected value) to be

(F) C'I:Qf/ dy e~ SWl.
%

1.6.2. Insertion at points of §. Consider the case when Y is the space of some kind of
fields on ¥, that have values in a vector space E. Let z*) be the coordinates on E.

At each point a € ¥ we have evaluation functionals
evh [x]d:ef z*(a).
So we can consider the functionals
F-evhl- - -evg;’
which are usually denoted
Flal-a" (a1)- - -2 (ay).
We say that the correlation function

(Fla]-a" (a1)- - -2 (ay))

is obtained by insertions at a;’s.

1.6.3. In the operator quantization of the function F on Y, one associates to JF an
operator F on a Hilbert space H. Then the above correlation functions are interpreted
as matrix coefficients of F and its compositions with other operators.

1.6.4. The case of strings. The evaluation functional

evg [2] = 2*(a)
should quantize to operators
7" (a).
When viewed as functions of a € 3 they form a function from X to operators on H,
(2, Z).

1.6.5. Weak vanishing of the quantum stress tensor. The quantization of the stress tensor

T, i.e., the non-dynamical variation 5‘;% is zero.

However, we will find that in the physical Hilbert state this is true in the weak sense only!
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1.7. Faddeev-Popov determinant. We consider the slice of all (z,9)— all (z,9)/G
given by the fiducial metric, so the slice consists of all (g,x). Then the path integral is
| Dz App(9) e~%®3 Where, App is the correct (Faddeev-Popov) measure on the slice,
ie.,

AFPfld:ef / D¢ 64¢5
g
is the (measure) of gauge transforms ¢ such that ¢g hits g, i.e., the difference between the
measure in fields (g, z) and the measure in the gauge group

The calculation of the measure involves the Jacobians for the change of variables. Their
systematic treatment involves Grassmann variable b, ¢, i.e., super-mathematics (determi-
nants= A"PR"= super-mathematics).

The resulting calculation of the path integral is is
(det V2)~P/2. det(P,)
here the first determinant is [ Dz and the second is a ghost integral [ DbDec.

1.7.1. Conclusion. The integral with the fixed gauge is meaningful and can be calculated.
The original “invariant” path integral can be treated as supplying the intuition for the
second one.

However, in the gauged fixed form, “the essential content of the gauge symmetry” is still
present as the BRST-invariance.
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2. The naive Hilbert space: quantization of criticality with respect to the
path

We will quantize the free strings in a Minkowski space (without ever mentioning the
Euclidean version).

2.1. Operator quantization of classical solutions. We want to quantize the classical
solutions into linear operators on a Hilbert space. We consider ¥ which is a tube or an
annulus, with the coordinates 7! = ¢ (timelike direction), and 72 = @ (circle direction).
So we can think of a map z : ¥— E in terms of its Fourier series z(¢,0) = Y., z,(t)e™.

We are considering the criticality equations in the space of all pairs (z, g). The criticality
in g requires that g is conformal to the pull-back of G, it was encoded into the vanishing
of the stress tensor T'. The criticality in x (requires that z is (G, g)-harmonic, in the
conformal gauge (i.e., for the standard metric §), this is the standard harmonicity equation
00 z, = 0.

Let us make a difference between the dynamical variable z and a non-dynamical g. While
x will give the Hilbert space H,qive, g Will give a constraint on this space, i.e., it will carve
out a piece Hp, with a physical meaning.

Now we will concentrate on x and its harmonicity equation. It means that x is a sum of
a holomorphic and an anti-holomorphic function. In other words dz is holomorphic and
Oz is anti-holomorphic. We denote the Laurent series expansions in the annulus by

6:(;(2,2)(1:“ Z a2t and  Oxz(z, Z)dzef Z anz" L.
Z Z

Here, o, o, are functionals on the space of classical solutions x, but we can actually ex-
tend them to functionals on all maps = by integrating over a chosen circle 0x S1C Rx St =

%, i.e., the unit circle z = ¢ in ¥ = C*%¥ C — {0},

def —n dz _ o —i(n—1)0 db
o (2) /S (@000, e = /0 (9.2)2(0,0) e 5L,
~ def 3 >—n dz _ S i(n—1)0d0
a(z)= /51 (ﬁzx)(t,ﬂ)‘tzo = /0 (0,2)x(0,0) e o

These functionals will quantize to operators a,,, gn on the Hilbert space H,qive-

We will construct H,4ive by a standard procedure in physics. We interpret the Hamiltonian
of Polyakov action in the conformal gauge as a sum of harmonic oscillators and a free
particle. This interpretation gives a Poisson structure and therefore a prescription for
the quantization. So the essence of this approach is that the action suggests the Poisson
structure.
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One could make the same choice of a Poisson structure on standard mathematical grounds.
Algebralcally, this is the same choice as in the construction of affine Heisenberg Lie alge-
bras f), i.e., the cocycle giving the central extension f) of the loop space ht,t~ ] by CK.
Geometrlcally, it means that one considers the space of formal loops b[t,t™'] in b as a
cotangent bundle to the space of formal pointed discs th[t] in (b, 0).

2.2. The action for the standard metric on a torus. On a torus ¥ = Rx S!, with
coordinates ¢ (time) and 6 (angle), and the standard (Lorentzian) metric g5, = —0? + 03,
the action is

e - d 2 =T T
Slz, 9] € T - / dA ldelle, _ —/ dtdf (dz)* = —/ dtdf z? — .
(=) 2 2 Js 2 Js

2.2.1. When string is s particle. This is the case when z(t,0) = x(t) does not depend on
the angle #. Then the action is

2w o
S[l'agst] = % / dtdo .’L‘t — /dt/ do 72 = 27;T /dt/
R 0

When T = 1/27 this is the Newtonian kinetic energy action for a free particle (of unit
mass!).

2.2.2. Fourier expansion. We will use the the Fourier expansion in the direction of the

string .
o(t,0) = Y aa(t)-€™,

Z
here z(t,0) € E but z,(t) € Ec and z,(t) = z_,(t). Now,

Sz, gst) /dt/ df Z xp ”’0 j:q t)eiqa — Z ip-xp(t)-eipaéiq-xq(t)-eiqa

pq

- g.gﬁ /R dt ; a‘cn(t)é:b,n(t) + n(—n).xn(t)éx,n(t): / dt L(z, ).

R

The “time Lagrangian” (z, 1) is therefore a sum

T) = Z L,(zn, %) Lp(zp,2,) = Tm Z End—p— N2 Tpx_y, = 2T (Z End—p— N2 T Ty + 53:3)
n

n>0

2.2.3. The choice T = 1/27 of the string tension. This choice really means that we use
the standard normalized measure on the circle. Now, the Polyakov string action reduces
to the Newtonian action for a free particle when the string degenerates to a point, and

also )
L(Tn, &) = Y i — 0Pz, + 53‘:3.

n>0
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2.3. The canonical formalism. The canonical momentum “conjugate to” the coordi-
nate function z,, is

get OL _
The Hamiltonian function H associated to the Lagrangian function L(z, %) is the kinetic
energy minus the Lagrangian:

def . 1
H:e <pn7 $n> - L= Z 2pnG',*p—n +pg - (p—né*pn - annéx—n + Ep%)
n>0

1
J— . 2 . — 2
= n§>0 Pngp-nt N'Tn Ton + 5P

2.3.1. Interpretation. We will understand the contributions in the following way:

e ip} is the Hamiltonian of a free particle (of unit mass), it corresponds to the
motion of the center of the mass of the string.

® p,.p_n+n’z,x_, is a Hamiltonian of a pair of harmonic oscillators. It corresponds
to the n'™ mode of oscillations of the string around the fixed center of mass.

HERE (After this, go back and finish 11.3.5.9 .)

2.4. ||[REVISION ENDS HERE||.

2.4.1. Recollections on harmonic oscillators. In a vector space M with a metric G, we
consider a harmonic oscillator with the frequency w. Its Hamiltonian is

n
H= Z p?+w2qz~2
i

We will think of it as a new inner product
¥, d) (", ¢") = pipi +w’qq)
on T*M = T*R". The corresponding Poisson structure on 7% M is
{pi,q;} = 6.

Now, in order to think of the quadratic form H(p,,p ,q:,q ) = pip_+w?q,q_ as a pair
of oscillators we change the variables from a. = (p;,¢.), € = £, to a® = %(a+ +ea_), so

that i.e., a. = (a™ +ea™) and
. 1

1 , _ _
P = §(p++8p_), ¢ = §(Q++5(I—), i, pe=Dp +ep, ¢ = q +eq .
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Then we can interpret H = aj-a_ = (%3%)? — (2%)2 = (¢*)?+ (ia”)? as a pair
of harmonic oscillators and with this interpretation the Poisson structure is {p®,¢°} = ¢
and {p°, ¢ ¢} = 0. Therefore, {p.,q} = {pT +ep~,¢" +&'q"} = 1 — €', hence,

{pe,q-} = 2, and 0= {p., ¢} = {pr,p-} = {a+,q-}.

We will apply this to H, = p.p_, + w?z,2_, with p, = p,, ¢4 = z_, and p_ =
Py ¢- = Tn!

[The correct framework should be the notion of a harmonic oscillator in a vector space M
(with a metric G)), and with the frequency w. It is given by the Hamiltonian H =

»? + w2 pp+ wzq(-;q. We can think of it as an inner product (p/,q')-(p",q") =
/ n 2.1 1l *
. -q" on T*M".

pop'+wid " on ]

2.4.2. The change of variables. So, our Hamiltonian suggests the Poisson structure in
which p,’s commute and z,,’s commute, and {(py)n, (")m} = 205 m0,, which we denote
symbolically by {pn,Zm} = 26,,,. The same as for the harmonic oscillator, we pass to
complex coordinates. In terms of quantities

1
ap = §(pn —inx_y), left movers,

~ 1 . .
ay = §(p_n —inxy,), right movers,

the Poisson structure is
{an, an}t = indprm = {an, an} and {an, an} = 0.

(One has, {au, am} = (3)%2{pPn, —iMT_m} = 16, _m-(—im)-2, etc.) We will also record
the inverse change of variables: since a_, = %(p_n +inz,), a_,= %(Pn +inx_,), one

has
~ 1 - T,
Pn= Qn+Q_p, Tp= ._(a/—n_a/n) = _( n_a—n)-
m n

One has @, = a_, and o, = a_,, since x_,, = T, and the same for p, = ©_,.

2.5. Quantization of functions. The functions «,, &, quantize to operators &, En (we
often forget the hat). The prescription for the quantization of Poisson brackets is that

{f.g} = hgives {f,§} = “h, hence

[, ] = RO m =[O, O] and [On, ] = 0.
Also,
PR h
[pnaxm] = 2;571,711 and 0= [pn;pm] = [xnal‘m]

We are usually interested in the Planck scale, i.e., i = 1.
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2.6. The Hilbert space. We will see that we have no choice in the choice of the Hilbert
space for the oscillations — the commutators of o, ®,, n > 0, forces it to be the oscil-
lator representation of the affine Heisenberg Lie algebra. The remainder is the standard
quantization of the free particle part (i,e., ag = @y = %po).

(1) Adjointness conditions. Recall that @, = a_, and &, = a&_,. This quantizes to
of = a_, and o), = a_,, where * denotes the Hermitian adjoint.

(2) Operators generate affine Heisenberg Lie algebra.  The above commutators show
that o’s and a’s span two commuting copies of the the affine Heisenberg Lie algebra
M= M [t,t7]®CK corresponding to the metric G on M. More precisely, the condition
f = 1 means that o,’s generate the action of the enveloping algebra U (]T/[\ ) in which K
acts by 1.

(8) Unitary representations of affine Heisenberg Lie algebras at K = 1. Recall that one
can “split off the zero mode from the affine Heisenberg Lie algebra i.e., it decomposes into
a sum of Lie algebras M = M'e@ M. Since M is abelian, Uy _ 1(M) = UK_l(M’) ® S[M],
and we recall that Ux_;(M") is the algebra Dy of dlfferentlal operators on a certain vector
space V.

The only irreducible representations of the affine Heisenberg Lie algebra M in which
K acts by 1 is the so called oscillator representation Oscy,. We have constructed it as
a Verma module and identified it with the space O(V) of polynomial functions on the
vector space V = @y tFM.

Moreover, if a representation of Ux—;(M’) on a Hilbert space satisfies the adjointness
conditions above (we call such representations unitary), it is a multiple of the oscillator
representation.

(4) Unitary representations of ay,’s and &,,’s.  To put everything together, we introduce

—_—

another copy M of M and observe that o’s and &’s generate an action of Uk= 1((M€BM))
Uk- 1(M@M) ® S(MEBM) However, the 0-modes in the two copies M coincide since

we had only one operator ap = ¢ with the index 0. So the action of S(M@®M) reduces
to S(M).

Now the part (3) (applied to M@ M), shows that our Hilbert space is the tensor product of
the oscillator representation Osc,, .77 of (M@®M)" and a representation H, of the abelian
Lie algebra M! (When viewed as a representation of Uyx—(M@®M)' only, then H, is the
multiplicity of the oscillator representation Osc M@JT/;.)

Moreover, Osc, o7 = Oscn®0scy; (clearly @< t’“(M@M) = B0 t*MBEBr<o tk(ﬂ)
gives O(@p<o tF M)RO(Breo th(M)) = O(®peo tF(MOM)).)
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(5) The Hilbert space. Finally, the representation Hq is the quantization of Hy = épg of
a free particle, so it is L*(M). So

H = Oscy®0sc;QL*(M).
Here, The action of M on L?M is the quantization of velocity (momentum) of a particle.
L?M has an idealized basis of pure momentum states |\,), A € M* (as a function

Am) = € A7), On the corresponding line C|\,,) M acts by A, and [2M is a continuous
sum — an integral — of these one-dimensional representations [,.. d\ C|\).

(Physicists sometimes talk of L?(M) as a sum of these lines, hence of H as a sum of
Hilbert spaces Oscpy®0sc;QC|A).)

2.7. The Hamiltonian. We will quantize the Hamiltonian using the symmetric quanti-
zation in p, z-coordinates. Then we will recalculate it in terms of @,,, a,, in such way that
positive n’s are on the right (normal ordering).

For each n,

~ 1 .. ~ - 1. ~ A
(pnp—n + n2xn$—n) d:ef §(pnp—n + n2x—n$n) + E(p—npn + n2$nx—n)

1o o e PN | N PSP
= 5[(pn+mx_n)(p_n—mxn)—(znx_np_n—znpnxn)]+ 5[(p_n+mxn)(pn—m:r_n)—(mxnpn—mp_nx_n)]
1~ = o~ N e~
= E[afna/n'i_ a_pOy + Zn[pnaxn]+ Zn[pfnaxfn]]-

The sum over n > 0 gives a meaningless formula

AN ]‘/\
H:20+Z nan anan—i- 2n.

2.7.1. (-regularization. Recall that C(s)d:ef > n~* converges for Re(s) > 3 and has an
n>0
analytic continuation to the complex plane. So we can interpret > nas ((—1) = —1/12.
n>0

Then HX HL—i-HR for
91 el
1= P+ Zanan +¢(-1), Hr= pj+ Zanan +¢(-1).

n>0 n>0
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3. The String Spectrum

Recall that we still have to impose the criticality in g, i.e., the vanishing if the stress
tensor.

Moreover, there is one more problem from the point of view of physics — in the so called
naive Hilbert space H,qve that we have constructed, there is a canonical non-degenerate
hermitian form compatible with the action of the operators &, @, (in the sense that

“S%

a; = Q_p,). However, it is not positive definite so that H .. is not exactly a Hilbert
space. This problem arises because the construction of the affine Heisenberg algebra uses
metric G on M and for physics requires that G be indefinite (Euclidean G gives directly a
Hilbert space). This contradicts the physical intuition — the norm should be a probability,

hence > 0.

It turns out that the solution of the first problem also solves the second. The first problem
forces the dimension of the spacetime to be 26 (called the “critical dimension” for the
bosonic string or for the representation theory of the Virasoro Lie algebra).

3.0.2. Recall that in conformally flat coordinates the stress tensor is given by a holomor-
phic function T'(z)(z, g)d:(af T,.(z,9)= azx(-; 0,z and its conjugate T'(Z)(z, g)d:ef T;::(z,9).

We develop these into Laurent series

T(z)= Y Lpz"? T(E)= )Y Lnz ">

4. Appendix A. The Weyl anomaly

This is one more train of thought leading to the conclusion D = 26. One considers the
conformal invariance on the quantum level in the language of physics (stress tensor).

The Weyl anomaly is the fact that in order to have a consistent theory one needs some
assumption on the background (M, G). For a bosonic string in the flat (Minkowskian)
spacetime, the condition is D = 26.

The problem appears as Tii(lzef 9T j; vanishes in the classical theory (Weyl invariance),
but not in the g-theory unless D = 26. So the g-theory is Weyl invariant only for D = 26.
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Part VI. Representations as the algebraic structure on the Hilbert space of
a quantum string

0. Intro

0.1. Hilbert space of the bosonic string. Our goal is to describe in a mathematically
natural way the Hilbert space M ing(M, G) of a bosonic string in a Riemannian manifold
(M, G). The basic case we consider is when (M, G) is the Minkowski space (we will also
sketch the case when M is a compact Lie group U with an invariant metric, and we will
hint towards the general case). Since physics is interested in the Minkowski metric, our
G need not be positive definite.

In consequence, the naive construction produces a larger vector space Hyqive With a natural
hermitian inner product which is not positive definite. Then one cuts out the bad part and
obtains the above true Hilbert space Hiping(M, G). For now we will only be interested in
constructing the naive version which we will call .

0.2. The structure of % (phantasy). In, general, if we are quantizing “evolutions of
the string of a topological type ¥”, i.e., maps from a surface ¥ to (M, G), then H will
depend on M and the choice of S'-parameterizations tg of loops S in 9X.

The fundamental object is a bundle of Hilbert spaces Hu(Z,t) — M. Its fibers
Harm (0, t) are multiplicative in the set my(0X) of connected components of the
boundary 9%. Precisely, the fiber is a tensor product

HM,m(aE, L) = Sew@é@g) /HM’m(S, LS)

over loops S in dX. In the basic case of open strings, ¥ is a strip hence 0¥ = S! and
there is one factor. For closed strings ¥ is a cylinder, hence 0¥ = S' LI S! and there are
two factors.

The Hilbert space should then be
Mg (95, 0) = / devol(m) Fagm(95,0),
M
However, the physicists talk of a sum H(0%,1) = Bmem H mm (0%, 0).

Our goal here is the construction of basic ingredients — vector spaces Harm (S, ts), i.e., for
each point m € M we need one vector space

Hon ™ Harm (S, idg:).

Moreover, as we will only consider the case when M is a group, we can assume that m = 1.

0.3. Representation theory. Spaces H,, will carry an action of operators Z, which are
quantizations of Fourier modes z(t,0) = Y. z,(t)e™’ of a moving string. These operators
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satisfy algebraic relations [Z,,Zn,] = Andmin, so they generate an algebraic structure
acting on H. This structure is usually viewed as a representation of an affine Lie algebra.

In the simplest case of strings in a vector space (say the Minkowski space M), we will
also view Z,’s as generating the action of differential operators on a space of discs in a
Minkowski space. In this case, the mathematical picture of quantizing a string is quite
parallel to the quantization of the particle phase space — the cotangent bundle 7*C to the
configuration space C. Here, the string phase space is the space of (based) loops. This is
a vector space which one can canonically view as the cotangent bundle of the subspace of
(based) “discs” — loops that extend across 0 to a map from a disc. Then the functions on
based loops deform to differential operators on based discs.

In the case of strings in a compact semisimple group U, H; will carry an action of the
corresponding affine Lie algebra u. Moreover, this action integrates to an action of the
corresponding affine group U.

0.4. Loop groups. The configuration space for strings in a real manifold M is the space

of smooth maps A(M)d:ef C*> (S, M) called the loop space of M. The tangent space at a

loop z is the space of sections of the pull-back vector bundle z*T M over S!.

The basic case of interest will be when M is a real vector space (the Minkowski space),
and more generally, when M is real Lie group U. Then A(U) is a group for pointwise
multiplication of loops, we call such groups loop groups.

Its Lie algebra is the tangent space at a the constant loop 1, i.e., the space A(u) of maps
into u = T'U, with the pointwise Lie bracket [f, g](t) = [f(t), g(t)]. It contains a dense
Lie subalgebra of polynomial loops Ay (u) = {finite sums Y., an,e™, a, € u}.

0.5. Quantization of based loops. We are interested in quantizing the space of loops
A(M), i.e., attaching to it a Hilbert spaces H,,. Though we think of the space of loops
A(M) as the configuration space, it is also a “phase space”, in the sense that a choice of
a metric G on M should make it close to a Poisson manifold — the fibers of the evaluation
at 1, A(M, m)d:ef {f € A(M), f(1) =m}, m € M, seem to be Poisson spaces. Each of
these should contribute a vector space H,,.

We will assume that M is a Lie group U. In this case we will first sketch the construction
of H; (for 1 € U), in a geometric setting, and then we will do a more detailed treatment
in an algebraic setting.

If U is a vector space then (U is the cotangent bundle to the subspace Q25¢(U) of “discs”,
i.e., loops f that extend across 0 in the sense that the Fourier expansion f = > f,e™?
is a sum over n > 0 only. Then H,; is the space of functions on the subspace D,.

We will also be interested in the case when U is compact. For the generalization to this
case we should review the vector space case. For a vector space V it is better to think of
functions on £4(V') as functions on the whole space (V) with the special property (say,
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the property that they are invariant under translations by the complementary subspace
Qeo(V)).

For a compact group U, Q(U) will be a complex manifold and #; will consist of “smooth
functions on Q(U) with a special property that they are holomorphic”. Actually, this does
not quite work since we only get the constant functions. So we modify the formulation:
‘H1 = holomorphic sections of a line bundle £ over Q(U).

1. Geometry

The (only) source is Pressley-Segal, Loop groups.

Here we sketch the construction of the Hilbert space #; for strings moving in a (semisim-
ple) compact Lie group U.

1.0.1. On the choice of the geometric setting. So far, we have been considering the smooth
maps from S! to a real manifold M. For a moment we let M be a vector space for
simplicity. However, there are other meaningful notions of “loops”, say, smooth loops in
M contain the polynomial loops in M — these are the finite sums ), mne™®, m, € M.
These can be identified with the algebro-geometric loops M[t,t7!] = polynomial maps
from C* to M. Moreover, these are now included in the space of “infinitesimal loops ”
M ((t)) which are maps from an infinitesimal punctured disc to M.

It turns out that all these versions are often equivalent in the sense that a construction
for one kind has analogues for all other kinds. So we will occasionally switch from one of
these “languages” to another.

1.1. Kahler structure on based loops. When U is a (semisimple) compact Lie group
U the group of “based” loops Q(U) = {f € A(U), f(1s1) = 1y} has an extra structure
— it is a Kdhler manifold. This means that it is a complex manifold with a real symplectic
structure satisfying some properties.

Since Q(U) is a group it suffices to describe these structures on the tangent space at
1, i.e., on the Lie algebra Q(u) = {f € A(u), f(1s1) = 0}. In order to 2(u) into a
symplectic topological vector space one does not need U to be compact, what is needed
is just a symmetric non-degenerate bilinear form (—, —) on u which is u-invariant, i.e.,
([z,u],v) + (u,[z,v]) = 0 for u,v,z € u. The symplectic form is then

W(f, g) % /S (d9), fg€ Of)

1.2. Affine groups. Algebraically, symplectic form w leads to an extension of Lie alge-
bras

0— R K— u'— Q(u)—0.
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Here, ' = Q(u)®R-K as a vector space. While K is central (i,e, [K,u'] = 0), for
f,g € Q(u) the bracket is

f, 91 [f, glaw + w(f,9)-K

(the first term is the pointwise bracket in Q(u)). On a larger vector space A(u) form w is a
skew form but it is degenerate — constant loops u are orthogonal to A(u). Still, as above,
it defines a larger extension of Lie algebras 0— R- K— u— A(u)—0 which contains the
preceding one.

Back in geometry, if U is connected and simply connected, these extensions of Lie algebras
give extensions of Lie groups

1= S'= U— A(U)—1

and 1— S'— U'— Q(U)—1. If U is not simply connected, say U is a torus (S')", the
central extension of groups require a bit more — a refinement of the form (—, —) to integers.

These extensions of loop groups are called affine groups.

1.3. Line bundle £ over based loops. Affine group U’ maps to the loop group Q(U)
and the fibers are circles. More precisely, the map U'— Q(U) is a principal S'-bundle. If
one replaces circle S' by the complex line C, one obtains a complex line bundle (vector
bundle of rank 1) over based loops

LEU X CE S\U'x ©),  for s-(u,2)= (u-s7",52).
S1

1.4. Complex structures on based loops. If U is a semisimple compact Lie group
then Q(U) has canonical structures of a complex manifold and the line bundle £ is a
holomorphic vector bundle over the complex manifold Q(U).

Complex structures on the real vector space Q(u).

1.5. Approximation of the space of based smooth loops by an algebraic object.
Assume that U is a real algebraic group, i.e., that it is given systems real numbers sat-
isfying some polynomial equations. Then one can complexify U to a complex Lie group
G = Uc which consists of complex solutions of the same equations. Say the complexifica-

tion of the group U = U(n) of unitary matrices is the group G = GL,(C), case n =1 is

(S')c = C*. The loop Grassmannian of G is g G(K)/G(O) where K = C|z,27!] and

O = C(lz], however if we use larger rings K = C((z)) and O = C][z]] the homogeneous
space remains the same.

Now, let us approximate the space of based loops €2(U) by polynomial based loops €2,4;(U).
This is a dense part of 2(U) and the inclusion ,,(U)C €©,,(U) is in some sense close
to equality — it is a homotopy equivalence. If a loop z : S'—U is polynomial loop
one can plug in complex numbers, so it extends to a polynomial map from C* to G.
This gives a map Q,(U)— G(C[t,t™"]) of groups. It turns out that the composition



97

Qo (U)— G(Clt,t )= G is a bijection. So, Q(U) can be approximated by a dense
subspace G.

1.6. The Hilbert space H;. This is the space of holomorphic sections of the line bundle
L— Q(U). It carries an action of the affine group U’, and also of the larger group U.
Once we differentiate it we get an action of the Lie algebra A(u) and its complexification

A(g). In particular, for x € u and n € Z, the element Tn zt® of A(u)C U acts on H.
These are the operators one meets in the standard description of the quantization of a
bosonic string.

In the algebraic version, one looks at £ as an algebraic line bundle over the loop Grass-
mannian G and H is the space of algebraic (polynomial) sections.

2. Algebra

The idea here is that one constructs representations of some Lie algebra g by induction
from a Lie subalgebra. The induction construction is based on attaching canonically to
each Lie algebra a an associative algebra Ua (“enveloping algebra of a”).

In the particular case when g has a “triangular decomposition”, induction procedure
gives us a nice class of the so called Verma modules V) of g, and each Verma leads to an
irreducible representation L, - its unique irreducible quotient. This includes the case of
Heisenberg Lie algebras associated to symplectic vector spaces and the case of affine Lie
algebras.

Recall that our goal is to construct the Hilbert space H; for strings in a real Lie group
U. For that, g will be an affinization u¢ of the complexification uc of the Lie algebra u of
U. One of the irreducibles L, will be the desired quantization #; of the space of based
loops Q(U).

We will first study affine Lie algebras ui¢ in the case when U is a vector space, these are
the so called affine Heisenberg Lie algebras. Then we will mention that this algebraic
construction works the same in the case when U is a compact semisimple group. This is
the case studied above geometrically, so we obtain an algebraic construction of the space
‘H1 constructed above as the space of sections of a line bundle.

2.1. Lie algebras. The intuition about Lie algebras comes first from their relation to

groups. For any Lie group GG, the tangent space gd:ef T1G has a structure of a Lie algebra.
Lie algebra structure on g measures the non-commutativity of G and under some topo-
logical conditions it captures the behavior of G. If G is connected and simply-connected
then the finite dimensional representations of G' and g are the same.

2.2. From Lie algebras to associative algebras. Let us say that a linearization of
Lie algebra g is a pair (A, @) consisting of an associative algebra A endowed with a map
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of Lie algebras ¢ : g—A (i.e., ¢[z,y] = [oz, ¢y for z,y € g, where the bracket on the
RHS is the commutator in A).

one associates associative algebra Ug with 1.

2.2.1. Lemma. Any Lie algebra g has a universal linearization (Ug,t). (Universality
means that for any linearization (A, @) there is a unique map of associative algebras

Ug J, A such that ¢ = fou.

2.2.2. Corollary. (a) Construction g— Ug is a functor: a map of Lie algebras b = g
defines a map of associative algebras Ub AU g.

(b) Representations (=modules) are the same for g and Ug, i.e., there are canonical
equivalences of categories Rep(g) = Rep(Uyg).

2.2.3. Lemma. [Poincare-Birkhoff-Witt] Any ordered basis z1, x5, ... of g gives a monomial
€1 ,..€2 .

basis ¢ = z7'z5’- - - of Ug.

2.2.4. Corollary. (a) g is a subspace of Ug. It generates Ug as associative algebra.
(b) For any Lie subalgebra b of g, associative algebra Ub is a subalgebra of Ug.

(c) Suppose that as a vector space g decomposes into a sum g = béc¢ for Lie subalgebras
b, c of g. Then the multiplication in Ug gives an isomorphism of vector spaces Ub ® Uc —
Ug.

Proof. (b) Choose bases x1, Za, ... of b and a basis yi, ys, ... of a complement to b in g.
2.3. Heisenberg Lie algebras.

2.3.1. The Heisenberg Lie algebra of a symplectic vector space. Let w be a skew symmetric

bilinear form on a vector space A. On AY A®DC- K there is a canonical structure of a Lie

algebra such that K is central, i.e., K, Z] =0, and [a,b] = w(a,b)-K for a,b € A.
Suppose that w is symplectic, i.e., that it is non-degenerate. An example is A =TV =
VeV* with w(v +v*,u+u*) = (vju*) — (u|v*).

A polarization of a symplectic space (A, w) is a decomposition A = U@V into isotropic

subspaces (i.e., w =0 on U and on V). Then USV* by u— w(u, —), hence A = T*V (at
least if V' is finite-dimensional).

2.3.2. Lemma. Denote g = A. Let us us consider the enveloping algebra Ug as a family

of algebras
def

U= U(g)/(K — k1) = U(g) ® C., reC,
U(CK)

where one denotes by C, the one dimensional C[K]-module on which K acts by k.
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(a) Ui(g) is the algebra Dy of polynomial differential operators on V and Uy(g) =
O(T*V). Moreover, the family Ui(g) = Dy, k € C, is the standard deformation of
O(T*V) to Dy.

(b) Consider the associative algebra Dy = @ ; Ca'v’ (we choose dual bases v; of V
and z; of V*), as a Lie algebra. Then V@V*@®C-1C Dy is a Lie subalgebra. This is the
Heisenberg Lie algebra for the symplectic vector space T*V'.

(c) Algebra Ug consists of global sections of the bundle of algebras U,g over Al =
Spec C[K].

Proof. (a) Ug is the algebra generated by V,V* CK, relation [v,v*] = (v[v*)-K for
v € V,v* € V* and the commutativity relations for other pairs of spaces. So, Ukg is
generated by V,V* relation [v,v*] = k-(v|v*) and commutativity relations between v’
and also between v*’s. If we think of (v|v*) as the derivative of the linear function v*

on V with respect to the invariant vector field v, these are precisely the relations in the
deformation of O(T*V) to Dy.

2.4. Verma modules.

2.4.1. Induction. For a Lie subalgebra bC g consider the forgetful functor
F¢: Rep(g)— Rep(b). In the opposite direction one has

Ind® : Rep(b)— Rep(g), Indg(W)d:erg% w.

2.4.2. Triangular Lie algebras. We say that g is triangular if it has a decomposition into
a sum of vector spaces g = g<oDgoPg>o such that (0) summands are Lie subalgebras,
(ii) go is abelian, (iii) [go, g2]C g7 for / = <0, > 0.

Then gzod:ef g0®gso is a Lie subalgebra and gso 2> g0/g>0 = go is a map of Lie algebras.

2.4.3. Example: gl,,. In g = gl, consider g-o = strictly upper triangular matrices, g =
strictly lower triangular matrices, and gy = diagonal matrices.

This triangular structure is inherited by some subalgebras, say sl,.

2.4.4. Ezxample: Heisenberg Lie algebra. In g = f:f/, let gog = V, g<o = V* and
go= C-K. Then a A € g* is the same as a number k = (\, K) € C.

2.4.5. Verma modules. Verma module V) associated to a triangular Lie algebra g and
A € (go)* is the g-module

VE1nds, Cy.
Here, C, is the one-dimensional vector space C which is considered as a module for g,
by go AC= End¢(C). We can make it into a module for gi via the Lie algebra map

950 — go, and then we induce it to g.
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2.4.6. Lemma. (a) Vector |)\)d:ef 1yg®1¢ € V) (called the vacuum vector), is killed by g~
and gg acts on it by A.

(b) There is a canonical identification of Ug.o-modules V, = U(g<g), given by the action
on the vacuum vector Ug.y 3 u—uld) € V).

2.4.7. Verma modules for the Heisenberg algebra. Here g = T*V is the triangular Lie
algebra associated to the symplectic vector space A = T*V.

2.4.8. Lemma. (a) The action of Ug on Vj, factors to an action of U,g.
(b) At k = 1, the action of U;g on V] is the same as the action of Dy on O(V).
(c) At Kk = 0, the action of Uyg on Vj is the same as the action of O(T*V) on O(V).

Proof. (a) K act by k on the vacuum vector. Since K is in the center of Ug, it acts by &
on Ugco-|k) = V.

(b) Recall that U, g is identified with Dy so that the generators v € V and v* € V* are
interpreted as a vector field on V and as a linear function on V. As a vector space Vj
is identified with Ug.o = U(V*) = S(V*) = O(V), moreover, this is an identification
of modules for Ug.o = O(V). The action of v € V on V; = O(V) kills 1 € O(V) (it
corresponds to the vacuum vector and V' = g, hence the action on f € O(V) is

vf=wv (f-1)= (v f)1=[v,fl- 1+ f-o1== v(f)

since v kills 1 and the bracket of v and f in Dy is the derivative v(f).

2.5. Affine Heisenberg Lie algebras and loops in a vector space. We start with a
“metrized” vector space, i.e., from an orthogonal or a symplectic vector space b, (—, —).

In either case, we consider the space h[t,t7] = Map(G,,,b) of “polynomial loops in b”.

This space has already appeared as the space A,y (h) of polynomial maps from S* to .

The metrized structure on b gives a skew-symmetric bilinear form w on h[t,#7'], and we
get a Heisenberg Lie algebra h = b[t, 17! oC K.

Applications to strings will use the orthogonal version, i.e., bilinear form (—, —) will be
symmetric. Then one of the Verma modules V; for a subalgebra b’ of E will be the
quantization #; of the space of based loops (M) for a real form M of h. (In this case
Verma module V; is irreducible, so V; = L; in the notation above.)

The infinitesimal version. Instead of loops b[t,t™'] = Map(G,,,b) consider the infin-
itesimal loops h((t)) = Map(0 — 0,), where, 0 = Spec CJ[[t]] is the formal disc (an
ind-scheme) and 0 — 0 = Spec C((¢)) is the punctured formal disc (a scheme over an
ind-scheme).
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2.5.1. The symplectic case. Let h be a super vector space with a skew-symmetric form
(—,—). It gives a skew-symmetric form w on h[t,t71] by w(f, g)d=ef Res(f,g). This makes

Hd:ef[)[t, t~1]®CK into a Lie algebra with K central and

[f,9] = Res(f,9)-K, f,gebhtt].

This is the most obvious construction, however it is not quite natural since we need to
choose a local parameter ¢ to define the residue of a function.

For z € h denote z,, = xt", n € Z. In these coordinates the bracket is
[Tm, yn] = Res(me-zt™ 'dt, yt")-K = 6 —pn m-(z,y)-K.

The triangular structure is given by §-o = h.Bh_ where Boo X thlt], b t=p[t~!] and

ho = hOCK.

2.5.2. The quadratic case. Let b be a (super) vector space with a symmetric form @ =
(—,—). It gives a skew-symmetric form on h[t,t"!] by w(/f, g)d=ef Res(df,g). This makes
Hd:eff)((t))@(CK into a Lie algebra with K central and

[f, 9% Res(df,9)-K, f,q € h((t)).

Here the derivative is used to make the expression skew-symmetric. The construction is
canonical since the residue is applied to 1-forms.

The triangular structure is given by hso = b§.@®h_ where hoo X thl[[t]], b ttp[t 1]

and o = hOC-K.
2.5.3. Lie algebra decomposition h = b'®b. Let ' L°(h)®eC-K)C b.

2.5.4. Lemma. (a) h((t)) = L°(h)®h with the first summand symplectic for w and § L
h((t)) for w. (This decomposition is a characteristic feature of the quadratic case which
uses the derivative in the definition of the form.)

(b) This leads to a decomposition into a sum of Lie algebras b = h'@h with b abelian.
(c) (L°(h),w) is the cotangent bundle to J°(b).

For the induced triangular structure on h’ one has h; = C-K and b’y = H>0, h'co = H<0.

2.6. U1h' is an algebra of differential operators. Here we will suppose that the bi-
linear form is non-degenerate.
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2.6.1. Geometric language. One can think of the space h[t] as polynomial (algebraic) maps
from the line A' = C to b - for h = C the space of maps from Al to h would be the
space of polynomial functions on A!, i.e., C[t]. It lies in the space h[t,¢ '] of maps from

G = Al — 0 to b (since O(G,) = C[t,t71]).

Let DX Spec Cl[[t]] be the infinitesimal disc (an ind-scheme) and D*¥ Spec C((t)) the
infinitesimal punctured disc (a scheme over an ind-scheme).

We will consider the maps of D into b (called jets or arcs) and maps from and D* into b
(called loops),

J(0)% Map(D,b) = b[[t] € LO)E Map(D*,b) = b((t)),

and also the spaces of based jets and loops

TO)E {y: D=b, 7(0) =0} = t-b[lt] € L°O)E {y= > 7t" € (1)), 70 = 0}

2.6.2. Lemma. (a) U;h'is dense in the ring of differential operators on based jets Dy =
DJO([)).

(b) Uph' is dense in the ring of functions O(L°(h)) on based loops.

2.6.3. Remarks. (1) The continuous modules are the same for differential operators and
for the affine Heisenberg Lie algebra §’ at K = 1.

(2) T will use here the infinitesimal loops b= h((t))®CK. However, the results are the
same for the smaller algebras of polynomial loops.

Proof. This is just a case of the claim for arbitrary Heisenberg Lie algebras lemma 2.3.2
but we write the details anyway.

The positive part b'so = th][[t] is literally the vector space J°(h), so we can think of it
as (translation invariant) vector fields on J°(f).

Next, we will identify the negative part h’. = @, t*h with the linear functions on a
topological vector space J°(h) = th[[t]] via the pairing cu(f,j)dzef Res(df,j) of f € " and
j € th[[t]]. For k,l > 0 and b,c € b, the pairing is w(bt ¥, ct') = 6, k-(b,c). So bt™*
becomes a linear function k(b, —) on the copy ht*C th[[t]] of b.

For i,j > 0, and a,b € b, the bracket in U;b’ is [at’,bt 77'] = Res(d(at),bt 77 1) =
d;; (i-a,b), the same as the bracket of a vector field at’ on th[[t]], and a linear function
7(b, —) which is extended from bt/ = § to th[[¢]] by O.

(b) The commutator in Uy is [at’,bt ] = k-0;; (i-a,b). So Uph! = U(H'/CK) =
U[L°(h)] is the commutative algebra S[L°(h)]. Since L°(h) is a self-dual vector space for

the pairing (f, g)d:efRes(df, g) as above, we can think of S[L%(h)] as polynomial functions
on the vector space L°(h).
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2.6.4. Deformation. We say that the specialization Ugxh’ where K becomes a number &
is the specialization at level k. Family of algebras Uph' is a deformation of functions on
based loops to differential operators on based jets.

Where does this deformation come from? Mathematically, there is one miraculous fact:
based loops in a vector space are the cotangent bundle to the based jets.

2.6.5. Remarks. (0) The above notion of “based loops” as a subset of loops does not
really make sense since it requires a choice of a local parameter ¢t. The natural space is
the quotient of loops modulo the constant loops.

(1) The whole story works the same for smooth loops into a real vector space with an
inner product

w(f,9) = /S1 (df, g)-

2.6.6. Verma modules for §'. We will just specialize the claims of lemma 2.4.8. Verma
modules for ' are parameterized by linear functionals on hy = C-K, i.e., by numbers £.
Observe that the action of Uh’ on V}, factors to an action of Ugh'.

With the arguments from the lemma we see that the U;h’-module V; can be identified
with the D jo(n)-module O(J°(h)), while the action of Uph' on V; can be identified with the
action of the ring of functions on L°(h), on the vector space of functions on J°(h)C L°(h).

2.7. Affine Lie algebras and loops in a compact Lie group. Starting from a com-
pact real Lie group U we get a complex Lie group G = Ug. Its Lie algebra g has a
triangular structure, for instance for U = (n) one has G = GL,(C) and g = gl, de-
composes into g-o = strictly upper triangular matrices, gy = strictly lower triangular
matrices, and go = diagonal matrices.

This gives a triangular structure of g with gso = tg[t|®g>o, g<0 = ¢ 'g[t ']®g< and
%o = 90®CK.
Now we have Verma modules V), and their irreducible quotients L). One of these is

the quantization H; of Q(U) which has been constructed geometrically as holomorphic
sections of a line bundle £ over Q(U).

2.8. Extras.

2.8.1. Vertex algebras. Verma modules Vi come with the additional structure of a vertex
algebra.

The underlying vector space of modules Vj, is U(h'<o) = O(th[[t]]), it is called the Fock
space. It also has an additional structure of a (co)commutative Hopf algebra - the space
of functions on a vector space.
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2.8.2. Polarizations. In the quadratic case the metric on b has two standard forms and
these lead to two interpretations of Ui b.

(i) The diagonal form @ =) zZ hence h = @ b, is compatible with the above interpre-
tation in terms of differential operators on the “disc space” h*[[¢]].

(ii) The polarized form @ = > z;y; comes with a a polarization of h: §h = h,®h_,
with h4 maximal isotropic and dual to each other via (). It leads to an interpretation by
differential operators on the loop space a*((t)).

2.8.3. Extension to arbitrary Riemannian manifolds. The above story with cylinders in
Minkowski space hr, may work for a general Riemannian manifold M. The tangent space
at a loop +y consists of sections of v*T™ and we want to use w(f,g) = [q (df, g), for that
one needs to make sense of the action of % on sections of y*T™. This is the Levi-Civita
connection for the pull-back v*G of the metric G on M. (See Brylinski’s book.)

The extension when M is a compact Lie group U seems “known”. In this case the
symplectic structure on based loops is familiar as either the Kéhler structure on the loop
Grassmannian G or as the central extension cocycle [Pressley-Segal].

In that case based smooth loops may be interpreted as A(U) = = {f €
C>(SY,U), f(l1s1) = 1y}. There are two quotient interpretations of this space
C>®(SL,U)/U = AWU) = U\C®(SY,U), and each leads to a Kéhler structure on
A(U). The corresponding real symplectic structures are generalizations of the above
story. Now, the Hilbert space of the quantization of loops is the Verma module or its
irreducible quotient (in this case it may be the basic representation of the loop group,
i.e., the sections of the determinant line bundle). We can think of it as the quantization
of a Kéhler structure on the loop Grassmannian. (So there would be no Lagrangian
subspace, only a complex polarization of the real manifold A(U).

Physicists have already considered such constructions. In order to be in the critical
dimension one takes maybe a semi-direct product of a group with a representation.
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Part VII. Super-symmetric quantum mechanics

0. Intro
0.0.4. The ingredients. We will combine the bosonic free particle L = %QEZ with two
fermionic free particles L = 191 + th91pp which we treat as a “complex fermionic free

particle” L = itn).

One can also add a Morse function W which appears in Witten’s formulation of Morse
theory as a Lagrangian term %(W’)2 + WT(dJ@b — ).

In the local case, related to the manifold M = A! = R with the standard metric we will
call this QM. In the “global case” of a manifold (M, G) we talk of a o-model.

In the global case this action has no SUSY and we need to add a curvature term Cw’d;wéﬁ

to restore the supersymmetry.

0.0.5. We will use Euclidean Lagrangian (so that one can compute the path integrals)
and the Minkowski Hamiltonian (so that we follow physics).

1. 0-dimensional QFT = integrals
0. Intro

0.1. Super linear algebra. A super vector space is simply a vector space graded by
Zy = {0,1}: V = V;@®Vi. We will say that vectors v € V,;, are homogeneous of parity

p and we will denote the parity by e p. Another notation: fermionic sign (—1)% is the
linear operator which is +1 on V and —1 on V;.

0.1.1. Algebra. A super algebra is an algebra A with a compatible super structure, i.e.,
Ay-A;C Ay In the presence of the super-structure one can use super-versions of stan-
dard ideas, for instance

(1) super-dimension (fermionic dimension) is dimg (V) = dim(Vp) — dim(V}),

(2) super-trace of a linear operator T : V—V is defined using its block decomposition
tI‘F(T) = tl"(T()()) — tI‘(TH),

(3) super-commutator in a super-algebra A is [a, b|p = b — (—1)%ba.

This is an example of the main calculational rule:

“The Rule: when a passes b a sign (—1)‘_“_’ appears.

(4) elements a and b of a super-algebra A super-commute if ab = (—1)%ba.

The notion of super-commutativity: (i) allows one to think of some non-commutative
situations as if they were commutative, (ii) gives a notion of a super-commutative algebra,
i.e., of a super-space.
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0.2. Super-manifolds. Super versions A™™ of affine spaces are given by the super-
commutative algebras of functions on these spaces

OA"™) = Rz!,..,2" ¢, ..., " = S*(Ra'®- - -®Rz") ® A (Ry'@- - -BRyY™),
with z*’s even and ¢*’s odd. It is a product of the affine space A» = A™° and a super
point A%™. A basis of O(A’™ is given by the monomials 1/}i1<"'<’kdef

Y-y,

0.2.1. Differentiation. A vector field means a derivative of the algebra of functions, so the
vector fields on A™™ are all € = €42 5or T f’“%, where % has the usual properties that

it kills z#’s and 6—1/},6107 = 0, but
g+ (-1)f

(fg) = -

¢k
has odd parity.

31/1’“ 31/1’“

This fits into the Rule when we say that 5 W“

The differential df = %dm“ + 81/1’“ L di* is of parity 0 so it satisfies d(fg) = df-g+ f-dg.

The contraction of vector fields and 1-forms (differentials) (£, w) satisfies (£, df) = £(f)
and the Parity Rule.

0.3. Integration. The integrals of functions on super affine spaces will be (ordinary)
numbers.

0.3.1. Super points. Integration of functions on a super point A°™ is defined by using

successively the formula f dy a+ bwd:d b. , i.e., the integral just takes the highest degree
coefficient (with a correct sign)

/ dp"--dyt Y 'S g
I= {i1<<ig}

(Analogy: for an analytic function f(z) the integral over a circle [., f(z) dz is the
coefficient of z=! in the Laurent power series expansion.)

0.3.2. Super affine spaces. Integrals on A™™ are evaluated so that one first integrates
over the fermionic variables and then we are left with an ordinary integral. For example

if S[.T, 17[)17 ¢2] - U(.Z‘) —+ V(.T)’(/Jl’[ljz then
[, wdi dgt esmeio [y vy Cl vy

k

= — / dx 7 V@) / dip? dypt V(z)pty? = — / dz V(z)e V@),
AllO AO|2 AllO



107

0.4. Gaussian integrals. Let our 0-dimensional manifold ¥ be a point. Maps from X
to M are now elements of M and a path integral [, o, D e 59 is an ordinary

integral f uv Dz e S1%9] Let M be a vector space and let the action S be quadratic in z,
Slz] = z'A;;27 for a symmetric matrix A, then this is a Gaussian integral:

/ Dz e 3@ Aijal) _ (det M)%
M

for Dx = [] j%.

0.4.1. Fermionic Gaussian integrals. Now let M be a super point (0,m). Quadratic
functions on M are function of the form S[z] = 'B;;¢’ for an anti-symmetric B (so
3S[z) = > ic; V' Bijib?). A fermionic Gaussian integral is

/ dp™- - -dopt e~ 3 VB = / dp™- - -dipt e~ i<i VB!
M

= / dyp™- - .d¢1 zy"/) ¢J
M

Since we get only the even degree terms, thls is zero if m is odd. If m is even this is

m, ( m
o T (3 B,

1<J

1<j

. . —1)m/ .. . . .
and we get a contribution % Biiji* *Biy, jyjm s Whenever iy, ji..., im/2, jmy2 1S an or-
dering of 1, ..., m such that iy < jx. Therefore, the Gaussian integral is the Pffafian of the

“antisymmetric” quadratic form
(_ 1)m /2

dp™ - -dipt e 2 VBV — LT
/]\/[ (m/2)!

(The Pfafian of an antisymmetric matrix is a square root of its determinant Pf(B)? =
det(B).)

. Pf(B).

0.5. Super-symmetry of the action. An ordinary (continuous) symmetry of a function
Son M is aflow ® on M (i.e., an action of (R,+) on M), which preserves S: S(®,(x)) =
S(z). An infinitesimal symmetry is a vector field £ on M which preserves S in the sense
that €S = (dS, &) vanishes. The same applies to super-spaces. In this setting the action
will be an even function on a super manifold.

We say that the symmetry is bosonic or fermionic if the vector field is even or odd. For
instance if S(z,v',%?) is independent of 1? this is a fermionic symmetry — the vector
field is 6%2 and the flow is the motion in the direction of ¢?. (Observe that in that

case the integral [,,, dz di? dy' e ® [24"9"] vanishes - this is the source of simplicity in
super-integrals.)
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A super-symmetry (SUSY) is a symmetry which mixes even and odd, i.e., the vector field
is neither even nor odd.

For an example, we will calculate the path integral for the action S[z,v1,v,] = U(z) +
V(z)112 when U = %P2 and V = —P' for a polynomial P = P(z) on A', and then we
will see that the result can be explained using a SUSY of this action.

0.5.1. Integration on A'° = |R. We will reduce the integral for Sz, 91, ¢»] = LP(2)* —
P'(x)1175 to integration on the real line and the standard calculus. First, by 0.3.2

Dz dy? dy' e S = / Dz P'(z)e 37
ALl R
now substitution u = P(z) gives a Gaussian integral

P(o0) L, _
/ Dz e 2" = deg(P).

P(—o0)

Here P is P interpreted as a map from S ! to itself — this can be done since P(+o0) is
one of {£oo}. The degree of P is defined as the number of times P winds up the circle
onto itself in positive direction. Observe that if deg P is even then deg(P) is 0 and this

is also the value of the integral since P(—oo0) = P(oc0). If deg P is odd then deg(P) is
the sign ¢ = £1 of the highest coefficient and this is also the value of the integral since
P(+o00) = &+ o0.

0.5.2. SUSY. The vector field

0 0 0
= (¢1+¢2)%+ ()3—1/11_P( )8¢2

is a supersymmetry of the action

= (1+¢2)(P(2)P'(z)—P"(z)¢1¢2) — P(z) P'(2) 1o — (—P(x)) P'(z )a—%wlwg— 0.

We check the sign in the last term: p5-t1¢s = —th155-10 = —11.
Moreover, this is a SUSY of the measure dz diy di; (a vector field acts on 1-forms by

o(df) = d(6f))
6 (dz dipy dipr) = (dx) dipg dip1 + dzx §(dipe) dipy + dx dipo 5(dihr)

= A1+ s) dibs dipy + do dP(z) dipy + dz dify d(~P(z)) = 0

since in the last two terms one has dx twice and in the first term one of dw;’s.
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0.5.3. Local arguments in A'?. The first ingredient is the vanishing of the integral —
locally in Al? and as long as we stay away from the zeros of P(x). This comes from
supersymmetry.

Let a € A', if P(a) # 0 then the odd component of §(a) is non-trivial. Then one can

change the coordinates near a to T,)y, 1y so that § = 8%2 and the measure does not

change: dZ diy di = dx diy dips (i.e.the Jacobian is 1).

Notice that we can not have T even and {/JVZ odd since ¢ is not odd. Still, one should
be able to show that it implies the vanishing of the integral in the slices = ¢ of this
neighborhood of a in A'2.

The second ingredient is the special case P = x. Then the integral is the Gaussian integral

Dz P'(z)e 2" = / Dz ae~39°7 = % = sign(a) = sign(P'(b)).
| pe P [ = = sign(e) = sign(P(5)

0.5.4. Conclusion. The first step reduces the calculation to neighborhoods of zeros b of
P(z). There P(z) is approximated by a line a(x — b). However, since P = «(z — b) has
no other zeros, by the first step the integral near b is the global integral.

So the total integral is the sum of signs of P'(x) at zeros of P(z), i.e., we count +1 when
P crosses the z-axis upwards and —1 when P crosses the z-axis downwards. The sum of
these is the degree of the extension P of P to S*.

0.5.5. Remarks. (1) One should still describe how the local contributions glue together.
For instance, over an interval Z CR, where P does not vanish, integral is usually not zero
in the inverse {z € Z} of Z in A2, though it vanishes in the “slanted inverse” {Z € Z}.)
So the integral can be large in a “small” difference of these spaces.

(2) Physicists would describe a vector field by 6z = (¢ + 1), 6y = eP(z), i =
—eP(x) where ¢ is an infinitesimal (i.e., €2 = 0) real number.

1. 1d quantum field theory: quantum mechanics

1.0.6. Euclidean Lagrangian. On M = A'? we consider the Lagrangian

"

1. e W -
L= Lg= 5[352 +(W)?] + iy + T(Wﬁ — Py).
Here we use the complexified fermions 1) = 1, + 510 and ¢ = 1, — i1s.

1.0.7. Remarks. (1) One has, i) = i(h1 — i) (Y1 + ithy) = —2¢1¢p, and
P = (Y1—ithp) (Y1 +i9hn) = Prihs+hothat i(Yiida—oth) = Yrehr+otn+ i(Yi+eii)
= by + Yoty + i(e) .
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Also,
1 . - .1 ) ) 1 ) )
§(¢¢ — YY) = Y — 5@7/))': Y1hy 4+ Pothy + i(thrahe) — 5(2i¢1¢2)': Y191 + Yarhy.

(2) Instead of simply writing 91, one often writes 2(¢y) — ¢p). These are classically
the same but the second formula is correct on the quantum level — it is the symmetric
quantization of the first.

(3) On often allows changing Lagrangian up to a total derivative. This affects the action
only through the boundary terms, so it does not affect the path 1ntegral when the path is

prescribed on the boundary. In this sense, 99 is the same as 111, + 191y or —(wv,b ).

1.0.8. The variation.
§Ly = & 0d+ W'W" 6z + i(60 Y41 01))+

n

50w (y—yy) +

w" 3 3 3
5 (0% P+ 69—d9 =9 69)).

def oL

1.1. Canonical formalism. We start with the conjugate momenta z — p= 2z = =
and ¥ defaL: ih. (Also, P—0.)

1.1.1. If one replaces ibyp with il (Ph — Thb) = = (P11 + Parby) then s — i,
1ﬁl—> — ’L%w and 1ﬁki—)ipk, k= 1,2.

1.1.2. Lemma. (a) {p,z} = 1, {¥,%} = —i, while z,p commute with ,%, and

{0, 0} =0= {4,9}.
(b) At A = 1, the non-trivial commutators are

[z,p] = 4, [,9]= 1= [,9],
while z,p commute with 1,1, and 0 = ¥? = 2.

Proof. We use the following rule: the non-zero Poisson brackets between coordinates come
from the conjugate momenta, i.e., 1 = {p, ¢} means that 1 = {g—é, z}. In the same way

1= aw,q/;} {I, 4} = —i{e,%}. This quantizes to [p,Z] = %1 and [;Z,{ﬁ\] =
Notice that {¢, 9} = {v, ¥} = i gives [¢,¢] = [¢,¢] =
Finally, for any odd quantity v, relation {¢,9%} = 0 gives 0 = [{p\, {ﬁ\] = 27:/1\2.

1.1.3. Muinkowski Hamiltonian. We start with the Minkowski Lagrangian
1 _ .
Lu = 5[ — (W] + it —

the Hamiltonian is then

n

W v,

H= Hy=pit T Lu= o[+ (W] + "0 —vd).
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1.2. Symmetries of the action. We will deal with “on shell” infinitesimal symmetries
— vector fields which preserve the action at the classical solutions only (“off-shell” would

mean a symmetry on the space of all fields). This can be remedied formally by adding

another contribution %,22 (for an even variable z), to the the action and extending the

symmetries bellow (i.e., one needs to prescribe §;z). The principle behind this is that
one needs the same number of even and odd degrees of freedom to have SUSY (super-
symmetry).

1.2.1. Lemma. (a) The Hamiltonian vector fields {—, Q;} given by the functions (called
charges)

1 - i - 1 _ i _
Q= oW +9)+ W =1), Q= spw—v)— SW(w+7)
are “on shell” infinitesimal symmetries of the action.

(b) The functions @); quantize to operators on the Hilbert space by the same formulas
1 - 1 - 1 - 1 _
Q= gp+d)+ SW(WH=0), Qo= gplb—P)~ W'+

These charges @Z commute with H.
Proof. (a) The vector fields §; = {—, @;} are given by

b= SWAD), b= T(id+W), ap= i - W),

br = ZW=1), dv= S@—iW), b= Z(=i—ilW),

Now one plugs in these expressions into § Lz and obtains 0 if z, 1), 9 is a classical solution.

(b) The operators Q; satisfy )
i[%l,ﬂﬁ] = ;W +v), QY= Gz +W), QY= (i —-W'),
an

i[Q2, 7] = %(Q/J - @, i[Q2, 7] = %(33 —iW’), ’i[Q%@E] = %
(c) [@i,Q;] = 6 H, ie., H= 2Q and Q:Qs + @:Q: = 0.
1.2.2. Supercharges @Q;. We see that these are the fundamental objects since the Hamil-
tonian can be reconstructed from supercharges. So at least in the operator approach, it

does not matter that the Hamiltonian vector fields for functions @); are only “on shell”
infinitesimal symmetries of the action since one has relations [Q;, Q;] = 6;; H.

1.2.3. N =2 SUSY. This means that we have two super-symmetries (01, Qs.
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1.3. The Hilbert space. This is the tensor product of a bosonic and fermionic Hilbert
spaces.

H = Hy@H; = Cla]eC[y] = Cla,], and Cly]= CoCy.

The comparison of H; and H;: 2™ € H, is the state that consists of n bosonic particles,
however, we can have at most one fermionic particle.

1.3.1. The action of a super Heisenberg Lie algebra on H. Here p,xr generate an action of
a Heisenberg Lie algebra for the symplectic vector space T* M, (for M = R), and v, do
the same for the odd symplectic vector space T*M; (for My = Ci). In the case W =1
of the Hamiltonian is a sum of an even harmonic oscillator %[wQ + 72| and an odd one

v = (Y — ).
The action on H; = C|0)®¢C|0) is by ¢ [0) = 0 and ¥ ¥[0) = (¢ ¥+ Py — Py)|0) =
1-/0). So, in the basis |0), ¥|0)

0 1 - 00
o= (o0) v= (o),
Also, 1/ is an annihilation operator and %) is a creation operator.

1.3.2. Number operators. These are the bosonic one N, = aa (recall that for the harmonic

oscillator H = 1(p? + 2?) we used the complex coordinate a = %(x + ip)), and the

fermionic one Ny = ). One has
[Nbaa'] = C_l, [Nbaa] = —a, [Nfai] = &a [Nfﬂﬁ] = _1/}:
and on @"¢’, Ny, = n and Ny = 4.

1.4. Path integrals. Operator e ?# corresponds to the interval I5 of length 3, i.e., the
interval I = [0,1], with the metric ¢ = > g. Its trace, Tr(e ?H) is the path integral for
the circle Sy of length 3:

Tr[e_ﬂH]:/ Aq(ale P |a) :/ Aa/ Dz e~ 5]
M M z(8)=a=x(0)

— / D:L‘ 6_5[1,9] — / .D.'L' 6_S[maﬂ§].
z: Sp—M z€ A(M)

In the super version, M is a super vector space My® R%2, and we let My = R.
R

Now, following the above calculation with idealized position states |z, 1, 15) in M, the
integration rules actually give

Trle=PH] = / D ¢~ Sl v,
z(8)=2(0), ¥i(B)=—2:(0)
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Problem: anti-periodic boundary conditions that are natural for the fermionic variables
do not have SUSY - relation like éz = (¢ 4+ ¢) = 4 is a collision of periodic and
anti-periodic boundary conditions.

Resolution: instead of the trace Tr[e ?#] consider the supertrace Trr[e~##]. The super

trace is defined by TT'F(A)d:ef Tr[(—1)" A] where (—1)* is the parity encoded as +1. Then
one reverts to the all-around periodic boundary conditions:

Trple—] = / Da e~ Slebiwbil — / Da o515
2(8)=2(0), ¥:(8)=v:(0) (w1 ,2)E A(M)

2. Case W = 3a?

Then W/ =z and W”" =1. So

L= L= [+ + W+ 50— 9 = ¥+ + W+ 9.

2.0.1. The variation.
6L = & 0+ x 6z —+ i(0 o+ 60) + 0 h + P 8.

2.1. Canonical formalism. We start with the conjugate momenta x — pd:ef g—]; =z
and 1) — & g—i = —itp. (However, ¥ g_f/; =07).

2.1.1. Lemma. (a) {p,x} = 1, {1,¥} = —i, while x, p commute with v, 1.
(b) At A = 1, the non-trivial commutators are

[z,p] = i, [¥,¥]= 1= [4,¢],
while z, p commute with 1, ), and {1,%} =0 and 0 = ¥? = 2.

Proof. We use the following rule: the non-zero Poisson brackets between coordinates come
from the conjugate momenta, i.e., 1 = {p, ¢} means that 1 = {g—g, z}. In the same way

1= {%,4} = {ILy} = —i{y,}. This quantizes to [5,7] = 21 and [, 9] = i
Notice that {y, ¢} = {¢,9} = i gives [, ¢] = [¢, 9] = &
Finally, for any odd quantity 1, relation {¢,%} = 0 gives 0 = [TZ, {ﬁ\] = 292

2.1.2. Hamiltonian. We start with the Minkowski Lagrangian
1. e 1,- _
Lot = 5l —a%) + it — (% — i),
the Hamiltonian is then

H= Hy=pi+ I~ Ly= o[+ + (6 0)
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2.2. Symmetries of the action.

2.2.1. Lemma. The Hamiltonian vector fields {—, @;} given by the functions
1 - 1 _
Q1 = 510(1/1 +1) Qo= 510(¢ — )

are infinitesimal symmetries of the action.

Proof. The vector fields §; = {—,Q;} are given by

bia = %(ww), Sy = %m 51 = Z—lm

S0z = %w—z]}), Sotp = 52—2:(; Syt = 82—2—55.

Now one plugs in these expressions into d Lg and obtains 0.

2.2.2. Infinitesimal symmetries as operators on the Hilbert space.

Q= gpW+9), Q= sp(w—19)

2.2.3. Lemma. (a) i[Q1,z] = (v +v), iQu,¢]= 1id, i[Q:,¢¥]= iiz,.
(b) Z[Qan] = g%(w - 1;)’ Z[Qzﬂ/’] = %IE, Z[Q%,’])] = % — T

3. 1-dimensional QFT: o-models
4. Geometry

4.1. Anomaly. Let us say that a classical symmetry has an anomaly if it does not survive
the quantization. From the point of view of path integrals, a symmetry of the action still
need not preserve the measure in the path integral (we have been vague on this measure),
hence need not preserve the path integral.

This may be OK — a classical symmetry may be replaced by its own quantization. For the
Polyakov action the diffeomorphism symmetry quantizes to the Virasoro symmetry, and
the Weyl symmetry (i.e., the conformal change of metric), has an anomaly which cancels
for D = 26.

4.2. Spinors. These are the sections of any spinor bundle S on Y. Recall that we have
(3, g,0r), hence a complex structure C on 3. A spinor bundle is any holomorphic line
bundle which is a square root of the canonical bundle K. Now, spinors are the sections
of a spinor bundle S on .

Spinor bundles form a torsor for H'(X, +) & Z29.
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Part VIII. Dictionaries
ApPPENDIX A. Dictionary

Notice that the IAS text has a useful dictionary.

A.0.1. Action. Classically, physical laws are expressed in the Lagrangian approach by
requiring that the certain quantity S[z| attached to a possible evolution z of the system
is minimal. One calls S[z] the action of z.

The action is usually the worldsheet integral (sometimes maybe a spacetime integral?),
of the Lagrangian function (= action density). The physical setting is therefore encoded
in the choice of the Lagrangian function.

Action is written in terms of elementary fields of the theory.?

A.0.2. FEuler-Lagrange equations. These are the associated PDEs - critical points of the
Lagrangian (=Action) as a function on some configuration space.

A.0.3. (Non)Dynamical variables. A field y will be said to be non-dynamical if it appears
in the Lagrangian but its derivatives do not.

In quantization, dynamical variables give the naive Hilbert space H,qive, and the non-
dynamical ones then give the constraints, which carve out the physically meaningful part
thanaive-

Symmetry principle. In trying to describe a physical system one may have some latitude
in choosing the action (Lagrange function) and even the fields in the action. It is expected
that one should choose

cen the most general action compatible with all symmetries.

A.1. Background. A field that is kept fixed in the construction of a QFT.

For example, in a o-model: the metric on the target.

A.2. Bosons and fermions. Consider an elementary particle and its Hilbert space of
states H. We say that this is a bosonic particle or Fermionic particle, if the Hilbert space
of states of n particles of this kind is S™H or if it is A"H. We also say that in these cases
the particle satisfies the Bose or Fermi statistics.

A.3. Classical solutions. The solutions of the EL-equations. i.e., the critical points.

25Sometimes the Action is called Lagrangian, and Lagrangian is called Lagrangian density.
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A.4. Correlation functions. These are the fundamental objects of the theory. they are
usually computed perturbatively, using the Feynman diagrams.

A correlation function is a diagonal matrix element for a composition of local operators

(Vlg1(21)- - bn(zn)v) = (D1(21)- - -Pn(zn)v, V)

for the vacuum v; more generally, it is a general matrix element between two vectors i.e.,
two states.

It is a distribution on the configuration space, the space of positions z; of local operators
bi.

The n-point function of a local field ¢(z) is the correlation function

(d(x1)- - -n (), )

A.4.1. Expectation value. Expectation value of ¢(x) is a special correlation function

(p(x)v, v)

i.e., the 1-point function!

A.4.2. They exist in the physically meaningful Lorentzian setting. Their Wick rotation
is the Schwinger function.

A.5. Critical dimensions. For the ST critical dimension is 26, however it contains a
tachyon (negative mass), so one passes to the super ST which has critical dimension 10.

A.6. CFT to QFT. In CFT the normal ordering trick suffices for quantizing products
(“finite composite operator”).

A.7. Dimensional regularization. One can study spaces of dimension 2 + €. The
infinities of the theory are then the poles at € = 0 of a nicer theory.

A.8. Dualities. Duality is a coincidence of two CFT. A necessary condition for a coin-
cidence is given by a dimension count (of total and compactified directions).

A.8.1. Proofs. However, proofs of duality seem to be ad hoc, i.e., calculation of both theo-
ries. This seems like the state of Langlands where large parts are proved by representation
theory without understanding the mechanism of L-duality.

ST may only yield manifestations of duality rather then a framework for understanding
it (that may be in M-theory).

A.9. Free Theory. No interactions. Oscillators uncoupled.

A.10. Feynman graphs (diagrams).
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A.10.1. Mathematics: expansion of integrals fv e~5. Feynman graphs index the terms in
the expansion of integrals
fe
1%

over a vector space V, and for a function which is quadratic plus higher terms.

The propagator is (S3)~! the inverse of the quadratic part Sy of S.

Vertices: higher terms of S (tensors on V*).

Edges: contraction via the propagator.

Perturbation expansion of the integral: the sum of all amplitudes of Feynman graphs.

Amplitude of the Feynman graph: the answer after the contraction.

A.10.2. Physics. A Feynman diagram is a scenario of particle interaction.

Vertices: interactions of particles (governed by the the terms appearing in the
Lagrangian).

Edges: Free motion of a particle in the spacetime.

Idea: Expectation values of quantities are sums over all histories, i.e., over all diagrams.
Each process is to be counted with weight e (Euclidean spacetime) or ¢** (Lorentzian),
determined by the action S. For each history (i.e., graph), one should integrate over all
positions of vertices. This expectation (correlation function) is a path integral.

A.11. Field. Any local data on a spacetime.
Classical example: section of a line bundle for a line bundle over the spacetime.

Quantum: Operator valued distribution on a space time, or linear map from smooth
sections of a vector bundle over the spacetime to operators.

A.11.1. Dynamical fields. Those that appear in the action with the derivatives. In
Polyakov action map is dynamical but the metric on the source is not.

A.11.2. Non-dynamical fields. They supply constraints on the remaining degrees of free-
dom hence reduce their phase space.

Say for the timelike component A of the gauge field in YM one can say that the integration
over the choices of Ay gives a J-distribution

/ e dAy = §(x).

Constraints generate a group acting on the phase space and the quotient is called the
reduced phase space.
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A.12. Field theory. It is free if

QFT: the Hilbert space is the completed symmetric product (symmetric power) of the
one particle space (as a representation of the P-group). Then the S-matrix vanishes and
the correlation functions have a simple formula in terms of the inverse of the Laplace or
the wave operator..

A.13. Fock space. This means S*W for the Hilbert space W of one particle states!

Hopf algebra structure. A priori it is a Hopf algebra O(W*) = U(W). Maybe these
structures are meaningful ?

A.14. o-model.

A.15. Hamiltonian quantization as a quantization of classical solutions. Con-
sider an action S. Classical solutions are the critical points dS = 0 (the differential is
called the variation in the infinite dimensional setting, denoted 6S.) The Hamiltonian
quantization will require a Hilbert space H and operators on H.

Let us build H here by thinking of the classical solutions.

If there are several variables quantization can be done in stages. We start with the

A.15.1. Dynamical variables x. Solve §,S = 0, i.e., fix the non-dynamical variable g and
consider the variation of z only, find the critical z’s (for a fixed g). Quantize the solutions
- if the solution is a formula for z involving some parameters ,, then one quantizes x,, so
that they become operators on a Hilbert space H.

ST example. Here, §,S = 0 means that = is a sum of a holomorphic and an anti-

holomorphic function 2 = z; +zgr = sum x,z2 * ' + sum 7,z ™ L.

A.15.2. Non-dynamical variables g. These integrate to an action of a group on the phase
space. One has some choice in the approach to quantization.

(1) “At the end of the day impose the constraint on the Hilbert space. This will carve
out the physical part.”

So one starts with (a) quantize the system, then (b) impose the the quantized critical
point equation T 9,5 = 0 in the form of requiring that (u,T,v) = 0 for u,v in a
subspace FPsical of physically meaningful states. This involves imposing L,, = 0 for half
of the coefficients L,, of T', hence a choice of a polarization of the Lie algebra generated by
L,’s. (c) Among the possible choices in your construction, fix those that that make the
inner product on HP" semi-positive. (d) Now the null-directions make a vector subspace
H™! the correct space is

/H+d:ef th/anull ]
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(2) BRST: enlarge the Hilbert space H to a complex (#*,d) by allowing also the odd
directions. Then
H*(M*,d) = H*.

(3) Solve the critical equation and then quantize. This involves a choice of directions in
the phase space, transversal to the orbits of the group generated by our non-dynamical
variable g. So it is not manifestly Lorentz equivariant.

ST example. The group generated by the non-dynamical variable g in the action is (?)

Diff(Z).
A.15.3. Instanton corrections. Example of non-perturbative effects.
A.16. Lagrangian. See Action.

A.17. Left and right movers. For a bosonic free string one decomposes the motion of
a string into a combination of elementary motions z,. Say, z;(c — 7) means that if we
want to be at the same displacement as time 7 changes, we should change position o in
the same way. So an initial bump (initial position of a wave), gives a wave traveling to
the right. In the same way, z1(o + 7) will mean that the bump travels to the left.

The same for x,, n # 0, except that the frequency (or velocity) of the wave is multiplied
by n. However, z, is different - it is the translation of the loop in the target vector space.

A.18. Mass. A simple Lagrangian density for a point particle is |d$|> + m?@?. So any
term in a Lagrangian density which is quadratic, i.e.of the form m?¢? or m?A, A" is called
a mass term, and one says that the field has a mass m! So the mass of the field is the
square root of the coefficient of the quadratic term in the Lagrangian density.

A.19. Minimal surfaces. ST seems to be a quantization of minimal surfaces (harmonic
maps?) but mathematically it is not known what that would mean.

Can Physicists quantize harmonic equations, say the Hodge theory?

Hope: MS problems will become more rigid after quantization.

A.19.1. Minimal surfaces are the classical solutions of the Polyakov action. A minimal
surface or say a geodesic, involves only a metric G on the target. So one requires both
that the metric on ¥ be conformal to the pull-back metric, and that a map be harmonic.
In the case of a geodesic it corresponds to parameterizing geodesic curves by unit speed.
For surfaces, again it may be that a harmonic map for (g, G) is not the right notion - that
its image is a minimal surface but that the correct reparameterization (of “unit speed”
or area preserving) is the one where g is conformal to z*G.

The standard problem of harmonic maps is when one fixes g and G and looks for extremals.
It is not the GN-action - Sgy is S,, with g is conformal to the pull-back!
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Actually, since S, depends only on the conformal class of g - the same as the complex
structure on ¥ - we can fix a complex structure rather then g.

A.20. Monopoles. These are the solutions of the classical equations that do not deform
(7).

BPS condition requires that the monopol has some of the SUSY that the theory has. So
it is viewed as avoidance of SUSY.

A.21. Parafermions. Particles with braiding Z, rather then only Z, as for fermions.
This is where a generalization of vertex algebras appears.

A.22. Physicists. They reduce any problem to an old one (say the harmonic oscillator).

A.22.1. Planck constant h. To simplify formulas one often uses a choice of units for which
h = 1. However, one will sometimes think of this as a variable. Physically, this corresponds
to the idea that as we change the scale that we are interested in, our view of the size of
h changes. Formally, it is a useful trick to have an additional variable.

A.23. Positivity of inner products. (i) The problem may be said to appear from the
lack of the same in Minkowski metric.

(ii) It seems to correspond to the expansion of a physical; system from a stable critical
point (i.e., a minimum, rather then a saddle). Therefore lack of positivity should be a
natural feature of some situations.

A.24. Nonlinear equations of motion. One 1st treats the free theory (linear equa-
tions). This gives a Hilbert space and then one checks that the perturbed theory stays in
this space.

A.25. Quantum Mechanics. It allows no interactions (creation ...). For that one need
QFT. So the QM of ST is the case of a cylinder (strip).

A.26. Quantization formalisms.

A.26.1. Lagrangian formalism: path integrals (functional integrals). Correlation function
of local fields ¢ (z1), ..., dn(zy) is calculated as a path integral over the space of elementary
field configuration.

| D2 bulan) - bulan) €,

for the path integral measure D® on the space of configurations of elementary fields.

A.26.2. Hamiltonian: Operators on a Hilbert space. It is traditionally local, by formulas,
then one has to check whether it is globally meaningful.
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A.26.3. Feynman-Kac formula. This is the coincidence of the two formalisms.

Holds in QM but in QFT only after both sides are renormalized.
A.27. Quantization of the ST.

A.27.1. Hilbert space. Consider the space of maps of a string d* into M. Quantization
uses “half” of info: just a map of (d,0) into (M, pt)! So the classical “phase space” is
Mapl[d*, M|, it contains a Lagrangian Map|(d,0), (M, pt)]. It quantizes to the Hilbert
space

H = 0 (Map[(d,0), (M, pt)])
and the algebra of functions on Map[d*, M| quantizes to the differential operators on
Map[(d, 0)? (M: pt)]-

There should be one Hilbert space for each marked point a. i.e., each external particle.
It should be

Ho = o (Map[(aa a)a (Ma pt)])
but this rather suggests having one Hilbert bundle #, over the spacetime, with fibers
Ha(m) = O (Map[(@,a), (M, m)]).

However, then one should have some differential equation such that the global phenomena
are the same as local (initial value problem), at least in the absence of topology on M!

The biggest geometric object around is the space Jets (M) of jets of maps from ¥ to M
(i.e. of sections of Mgdzef Mx¥— ¥. It is a bundle over ¥ and the fiber at ¢ € ¥ is

Jetg,a(M)d:ef Map(a, M). Moreover, the fiber maps to M by evaluating the map at the
center of the disc. Of course, we could also vary 3.

To marked surface X, a; one can associate the commutative algebra

O(Jets(M)|{a;, i € I}) = H Jets(M)|{a;}) H Map(a;, M)}),

el i€l

and if we also have a map {a;, i € I} == M, we get the quotient algebra of functions
on the space

Mapl(U G, {as, i € 1Y), (M, {woo(ar), i € 1} = [] Mapl(@s, ), (M, oo(a)]

of extensions of z4, to a formal neighborhood in .

A.27.2. Negative norm and zero norm. Example: timelike oscillations.

These are avoided since physicists think of norm as a probability. The ghost fields cause
cancellation of this unphysical part.

So a larger space with a pathology reduces to a physically meaningful one.
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A.27.3. Spectrum of String Theory (= “physical excitations”). This is the Hilbert space
of the constrained quantum system.

A.28. Relativity. It is kept on the target space but not on the world sheet.

A.29. Spontaneous symmetry breaking. It arises when one studies a system with a
symmetry G by perturbation expansion around a state that does not have that symmetry.

Example: Double well potential. Let the potential be an even function of the position
z, with the minimum around +1 and a local maximum at 0. Then the theory has a
+1 symmetry. Physicists do expansions around local minima (stable) and the expansion
looses the global symmetry.

Deeper example. Suppose that the “potential” is a vector v in a representation of G. If
we do expansion around a particular v, the remaining symmetry is G,. If v is say an
extremal vector one keeps a Cartan symmetry, for a generic vector all symmetry may go.

Spontaneous symmetry breaking may add mass to a massless particle: expansion of the
Lagrangian around v may add a quadratic term |v|?¢.

A.30. State field correspondence. A mystery?
A.31. Renormalization. Gives a family of QFT from one Lagrangian.

A.32. Spacetime. Examples when it is not split into space times time: exist, as com-
pact Riemannian manifolds (“Euclidean signature”). Such theories can be done in the
Lagrangian framework. However in the Hamiltonian framework (operators with a Hamil-
tonian) one needs to separate time.

A.32.1. Time. In the string formalism, time does not live on a worldsheet X, it is a
function on the target M and it becomes a function on Y once one fixes z : X —M!

A.33. Vertex operators. Expectation value or amplitude can be associated to a a Feyn-
man (string) diagram, symbolizing several incoming particles interacting and scattering,
so it will depend on the states of the external particles. A state of a particle is a vector,
and by the state—field correspondence in CF'T it is an operator.

The state—field correspondence as a bijection may not hold for more general QFT, or at
least is deemphasized.

Let the action be
s= [ .00
. The basic vertex operator is the tachyon

Vy(z) = : &%)
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with
b= apz "0,z "
nezZ
The conformal weight of a field is

h="2
2

Here p? = 2 = —m.

For instance consider two incoming tachyons which interact and produce two outgoing
tachyons, the change may be a mixing of momenta. Then one has a zero-loop diagram
which is a cross on the Feynman level and on the string level it is a sphere with four
semi-infinite tubes sticking out. Then one uses a conformal transformation to interpret
this as a sphere with 4 punctures. The state of an incoming tachyon can be thought of
as a vector and the corresponding vertex operator as a disturbance along the tube.

A.34. Virasoro. Moving a vector by Virasoro generators corresponds to a conformal
transformation.

A.35. Various.

A.35.1. Parameter ls. It appears in the Polyakov action to make it dimensionless so that
the path integral is defined.

A.35.2. Level. This is the Central charge C and it will equal the Dimension of the target
D. 1t is also called the conformal anomaly since in the path integral formulation of QM
it is the failure of QM to be conformally invariant.

APPENDIX B. Constants

D,d, T, c Units.

Part IX. Mathematics
APPENDIX C. Coordinates

We describe some standard coordinate conventions.

(1) The covariant objects have lower indices:
e Bases vectors e; in a vector space V,
e Coordinates «; of linear functionals o € V'*,
o Partial derivatives 0,
and the contravariant objects have upper indices:
e Dual bases vectors e’ of V*
e Coordinates v* of a vector v € V,
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e Coordinate functions x*.
(2) The upper and lower indices contract
® V= ’Uiei,
e The coordinates of inverse matrices A and A™! usually have the opposite
position of indices A = (AY) and A~ = (A;).
(3) Lowering and lifting of indices is done using a metric. A metric g on a vector space
V gives an identification 7o, : 178=Y7a3 Now,
e for a vector v € V, writing v with the lower indices v; means the coordinates
of the linear functional (,v € V™.
e One example is the calculation of a metric in a fake diagonal form

g(u,v) = uvigy; = u'v,.
(4) Applying a quadratic form g to a basis e; gives lower indices gi; = g(e;, €;).

In the world of manifolds, the basic covariant linear algebra object is the tangent bundle
T M while T M is contravariant. So the standard position of indices is

e partial derivatives are denoted 0,

e while the coordinate functions are z*,

e a metric on M (i.e., on TM) is given by a matrix (g;;), and the inverse metric
g* =g ! on T*M is given by the inverse matrix (¢*).

C.1. Coordinates of vectors.

C.1.1. Coordinates of vectors. A basis e; of a vector space V gives coordinates on V'
v = v'e;, and the dual basis e’ of V* gives coordinates in V*: o = o€’

For an (ordered) bases A of V we denote by v the coordinate column vector of a vector
v € V in the basis .A. For another ordered bases B of V' we denote

e by (5<4) the change of bases matrix,
e by (8<*4) the coordinate change matrix,

in the sense of

bi= (B+u)ijra; and B = (B<_A),UA'

For instance, (g<4)ij = (bi, a’).

Lemma. (a) If V = k™ then an ordered bases A defines a matrix which we denote A (the
columns are the bases vectors). In this case

o ()v= Av4
e (ii) the change of coordinates matrix is now (8+-4) = B~1.A,
e (iii) the dual basis A* of k™ is given by the matrix 4A* = A~ "
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(b) The columns of the matrix (B <—.A) are the B-coordinates of vectors in A.
(c) The change of bases matrix (z¢—4) is the inverse of the change of coordinate matrix

B, A (.A

(sa) = (P = (1),

(d) The change for dual basis is the transpose inverse of the change for original basis:

(B4—a+) = (5a) "

o (i), Avt = ap' = .
e (i) Therefore, B-v® = v = A-w*, and then v® = B 'A-vA
o (ili) 0ij = (aj,a;) = (a})"-a; = [(A")" Al
) (B+A)i= (B+A)e;= (B+A) a;* = a5
(c) The j™ column of (z<4) is (5¢—4)-¢; = (¢s;) and this is the coordinate vector
= (A®)b% = (A B)-e;.
(d) b]' = (B<—A)jk-ak, hence (B<_.A)jk = (bj,ak). Therefore, (B* (—A*)pq = <bp,0,q>, and
[

(5) Tk (5= ) = (5= )kj (5o 4=as) = (bn, @?)-(0F, @) = ((VF, )by, a*) = (@, d*) = 6.

C.1.2. Bilinear forms. A bilinear form g on V is encoded by a matrix

def
gij:e g(eiaej)-

We notice the following constructions

e Map 1,. Form g gives amap ¢ = ¢, dof g(v,—) : V—=V*. We will use the notation
v; for the coordinates of (v in the dual bases e’.

e Inverse bilinear form. If ¢ is non-degenerate then ¢, is an identification of vector
spaces, so it can be used to carry over g to V*. The resulting form on V* is called
the inverse bilinear form and denoted ¢ ! = g¢*. For o, 3 € V*

g (B g o, B) = (o, B).

e Bilinear forms on VU and Hom(V,U). If one has bilinear forms g and G on V
and U, we get g®G on VQU. If g is non-degenerate and dimV < oo, we have a
form ¢*®G on V*®U = Hom(V,U).

Lemma. (a) The map ¢ = ¢, is given in coordinates by

V4 def (w); = ngji, veV.

In particular, t4(e;) = gi; €.

(b) The matrix (¢*) of g* (i.e., g*(€',e’) = g¢%), is the inverse of the matrix (g;;) of g.
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(c) If we encode g using two basis A and B then
95 = (8a) - 9a- (5=a)" and (97 )5 = (5a)"" - (97 - (5a)"".

(d) The matrix of g®G on V®U is the outer tensor product of the matrices for g and G,
ie, if e; and f, are bases of V and U, then (9®Q)iy v = 9ij*G -

(e) If g is invertible, for linear operators VAR ,

(9*®G)(A, B) = G(Ae;, Bej)-g”.
In particular [|A[[Z, & (9"®G)(A, A) = Trlg~"A*G] and ||A]|§ 4.q = rank(A).
Proof. (a) We have (,v = v;e’, hence

def : -
v = <W|€z’>=e g(v,e) = g(U]ej,ei) = v/ gj.

In particular, te; = (ie;); € = (e;)*grj €@ = Oigr; € = gij €.

(b) grirg*(e’,¢7) = g*(gie’, ) = g*(res, €¥) = (eile?) = ;.

(c) Let ¢ = (g¢n) The change from A®A to BB is by ¢®¢, i.e.,
bi®b; = 90,00, =  GiuPj, - a,Q®a,. So, for a quadratic form g on
v,

(98)is = 9(bi,b;) = Giudju - 9lau, ) = (d-ga-d™)ij-
Since ()4 = (g4)7! and (g-<—4+) = (5+a)"", the claim for g* is the inverse of the
claim for g.

(d) (9®G)iu,ju = (g®G)(ezf[u ejfu)d:ef g(ei: ej)'G(fua fu) = gij'Guy-

(e) It suffices to check on a basis (e'®f,) (v)d:ef (€'|v}-f,, of Hom(V,U), but

(0*®G)(e®f s, €®f,) = ¢7-G
and

g™ - G([ei®fu]e¢, [ej®f,,]eq) = " 6ip0jqG(fu fv) = 9" G-
In particular,

1A||Z, = (0"®G)(A, A) = G(Ae;, Aej)-g7 = (A*G)yyg" = (A°G - g) = Tr[A’G -g] and
C.1.3. Derivatives.

Lemma. (a) The derivatives of bilinear and quadratic forms are given in coordinates by

(Oo,ug) (v, v) = (tu)p = uy and  (Bou)g(v,v) = 2.
(b) The differential of the determinant at an invertible matrix A = (A%) with the inverse
A_l = (Az]) is
Odet(A)

ddet(A) = det(A)-A;;-dAY, e, —SA

14116, a+c
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Proof. (a) Since g(u, —) is linear, 0,9(u,v) = g(u,—) = ¢, and 9yg(v,v) = g(v,—) +
g(—,v) =2g(v,—) = 2. In coordinates, (0,,,9)(u,v) = (tu)y = Uy and (0y,)g(v,v) =
2v,,.

Since g(u, —) is linear, d,9(u,v) = g(u,—) = iy, or in coordinates 0,,9(u,v) = (L), =
u,. Consequently, 0,g(v,v) = 2¢(v,—) = 2y, and 0,,9(v,v) = 2v,.

(b) The partial derivative 5% det(A) is the cofactor ay;. Now recall that >, AVqy, =
8 det(A), ie., A™-a = det(A)-I. So, 327 det(A) = a;; = [det(A)-(A~1)"];; det(A)-Aj;.
C.2. Coordinates on manifolds. Let M be a smooth manifold. A chart on an open
part U of M is an isomorphism ¢ : U—V with some V open in R*. We say that
the component functions X!, ..., X" of ¢ = (X!,..., X™) are coordinates X* on U. Let

W= ¢t VSU. We will use coordinates X* on U to identify U with an open part V'
of R".

Coordinates give frames dX* and 5% of T*M and T'M over U. A tangent vector v € T,, M
and a cotangent vector o € T, M now have coordinates

v = Z b 0 = 1}“i a:Z ay-dX* = o,dX".
1 I

oXw oxw’

C.2.1. Metrics. By a metric g on a manifold M we will mean a collection of symmetric
and non-degenerate bilinear forms on tangent spaces of M. So we do not assume that a
metric has to be positive definite.

A metric g on M is encoded on U in a symmetric matrix of functions

def 0 0

Guv = g(m, W)

A metric g on M i.e., on the vector bundle T'M, identifies TM and T*M by t,v = g(v, —),

which is described by

def
vu:e () = guv”.

This notation really means that we identify 7'M and T*M via ¢.

C.2.2. Inverse metric -t = g*onT*M. Via 1, we define a metric g* on T*M. The inverse

matrix (g’“’) (gu,,) U encodes g* by ¢*(dX*,dX") = g".

m
covariant tensors (tensor powers of T'M) and lower indices to contravariant tensors (tensor

powers of T*M). Upper and lower indices contract in calculations by pairing dual vector
bundles T*M and T'M. However, the identification of TM and T*M by the metric leads

to the notational conventions of lowering and lifting the indices.

C.2.3. Upper and lower indices. Starting from % and dz*, lower indices correspond to
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C.2.4. Pull-back of a metric. The pull-back of a metric G on M via a map x : X—M is
a collection of bilinear forms (z*G), on tangent spaces 1,%, a € X,

(@) o (u, v)d:ef G(dex u,dyz v), u,v € T,X,

i.e., one pushes forward the tangent vectors via the differential of z and then evaluates
G. If one is lucky, z*G is again a metric. (A necessary condition: z is an immersion, i.e.,
the differentials d,z are injective. If G is positive definite this is also sufficient.)

If one has coordinates 7* on ¥, the differential is encoded into the Jacobian matrix

oz

— = d2*(0,,) = (dz(0,,),dX").

67'_7' J J

The matrix of the pull-back metric g = z*G is
. dz# dz”
gij = (.T G)(an,aﬁ) = G(da: 87—7;,d$ 671) = G(a—naxu, 6—7_jaXu)
dz* dx"
= Guu ' 8T_i aXﬂ - 87']' aX'/-

C.2.5. Paths. Amapx : %— M is described in U via its component functions z# = X*ozx.
We think of these as functions (i.e., fields) on X.

C.3. Minkowski spacetime. For D = d 4+ 1, the D-dimensional Minkowski spacetime
is
M = timeX space = RxR¢ = RD,
with the Minkowski metric 1 corresponding to the quadratic form 7 on M given by
n def x% + Z xf,
i>0
so it is not positive definite. More precisely, n = —c®z2 + Y iso x? for the light speed c,
however we choose units so that ¢ = 1. The corresponding matrix is

Nuw) = (") = diag(—1,1,...,1).

We keep the notation u-v = 7(u,v) and u?> = u-u as in the Euclidean case. However, the
size of a tangent vector v € T,, M = M (velocity vector), will be now \/—v? since we will
be interested in vectors v with v?> < 0. Physically this means that the velocity in space

N> 2,
M1S<1:C.

Vo

This will introduce a minus sign in a number of places, say

o the kinetic energy is now 7'= —2i* = —@,
. . def
e the canonical momentum is p= —2£ = —L;

e and the relation between the Lagrangian and Hamiltonian is L + H = —(p|z).



129

APPENDIX D. Metrics, connections, curvature

We list basic differential constructions related to a metric on a manifold.

Let g be a metric on a manifold M, i.e., a non-degenerate bilinear form on 7M. We
calculate in local coordinates z°.

D.1. Levi-Civita connection.

D.1.1. Lemma. (a) Metric g gives a canonical connection V (called the covariant differ-
entiation or Levi-Civita connection), on the tangent vector bundle, i.e., a way to define
the derivative V,u of a vector field v in the direction of a vector field v. It is characterized
by

(1) The torsion T (u, v)d=ef Vv — Vyu — [u,v] vanishes, and

(2) g is flat for the corresponding connection on 7*M®T™*M.

So, the requirements are

Vo —=Vyu= [u,v] and zg(u,v)= ¢g(V,u,v)= g(u, V,v).
(b) More, explicitly, the connection is characterized by

2:9(Vay,2) = z g(y,2) + y 9(z,2) — 2 g(z,y) — g(z,[y,2]) + gy, |7, 2]) + g(2, [z, y])

D.2. Christoffel symbols I';;*. The connection V is encoded in Christoffel symbols
Vai 8j = kaak

We will calculate these in general and in terms of an orthonormal frame for T'X.

D.2.1. Lemma. 2T, = (Jg;+ O — Aigj)- 9.
Proof. By the part (b) of the lemma D.1.1, Christoffel symbols satisfy
2T g = 2-9(Ti;* 0k, 0) = 2-9(V,0;,0))
= 0; 9(0;,0) + 9; 9(0,0:) — 9 9(8;,0;) — 9(0:,[0;,0]) + 9(9;,[0:,0]) + 9(01, (8, 65])
= 091+ 0iqii — 019ij-

It remains to multiply with the inverse matrix (g').

D.2.2. Lemma. (a) If g is Riemannian then locally there is a frame v; of TX which is
orthonormal for g.

(b) Relative to an orthonormal frame v;, Christoffel symbols V,, v; = Fijkvk are given by

2Fz’jl = — g(vi, [vj,u]) + g(vj, [vi,v]) + g(vi, [vi, v5])-
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Proof. (a) Apply Gramm-Schmid formulas to an arbitrary frame. For (b), 2T =
2g(Tif v, v) = 29(V,,v;,v;) equals

= v; g(vj,v) + v; glo,vi) — v g(vi,v;) — g(vi, [v,u]) + g(vs, [vi, vi]) + g, [vs, v5])-

D.3. Curvature (“Riemann tensor”). The curvature R of the connection V is a 2-
form with values in End(T M),
def

R(u, U)Z VUVU — VUVU - V[u’v],
for vector fields u,v on M. It is encoded by the Riemann tensor
R(0;,0;)0r = (Va,Va, — V5, Vo, — Vig,.9,]) Ok = R,-jkl 0,.

D.3.1. The symmetries of the Riemann tensor.

Lemma. (a) R(v,u) = —R(u,v).
(b) R(u,v) is a symmetric operator for g
9(R(u,v)z,y) = g(z, R(u,v)y).

(¢) If one interprets R(—, —) a section of T*MQT* MQEnd(TM) = T(*M)®?QT* MQQT*MQT M
as a section of T'(* M)®2QT (* M)®? using g, the R is symmetric:

9(R(u,v)z,y) = g(R(z,y)u,v).
(d) A kind of a Jacobi identity
R(u,v)z+ R(v,2)u+ R(z,u)v= 0.

D.4. Ricci curvature (“Ricci tensor”). Since the curvature R of the connection
V is a 2-form with values in End(7TM), it can be interpreted as an operator
R : TMQ®TM— End(TM). Ricci curvature is the trace of this operator, hence a

section of T*MQT*M. Precisely, for vector fields u,v let R(u, v)zd:ef R(v, 2)u, i.e.,
R(u,v) = R(v,—)®u, then the Ricci curvature is
r(u,0)E Tr[R(u,v)] = (R(u,v)3|da*) = (R(v, O)ulda").

It is encoded by the Ricci tensor
def

rij= r(0;,0;) = (R(0;,0%)0i|dz") = (Rji'9)|da*) = Rji®.

D.4.1. Lemma. Ricci tensor is symmetric, r(v,u) = 7r(u,v), i.e., a metric-like object
(Since the Riemann tensor, interpreted as an operator is symmetric.)

D.5. Laplace operator. The Laplace operator for the metric g on ¥ is

V2 ¥ 49,0, = ¢78:0;.
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APPENDIX E. Surfaces: relation between metrics and complex structures

We will see that on an oriented surface a complex structure J is the same as a conformal
class of metrics g. We say that g is conformally flat for J (or for any local holomorphic
coordinate z).

What this means for us is that it is convenient to do computations for a given metric
g using the associated complex structure J. So, metric questions become questions in
holomorphic geometry.

E.1. Metrics and complex structures on surfaces.

E.1.1. Lemma. (a) A complex structure on a surface ¥ is the same as J : TX—TY with
J?=—1.

(b) A metric g on an orientable surface ¥ defines a pair of opposite complex structures
on Y. A choice of an orientation or of ¥ then picks one of these.

(c) With a fixed orientation, two metrics give the same complex structure iff they are
conformally equivalent.

Proof. (a) A complex structure clearly gives such J. Conversely, ...

(b) If one requires that the operator J, on 7,3 is orthogonal then there are two solutions
for J2 = —1, and they correspond to the two orientations of ¥ at a.

(c) J, determines g, up to a scalar — for a fixed vector e, asking that the length is 1 fixes
a multiple cg, of g,, then J,e,e is an orthonormal basis for cg,, so they determine cg,.

E.2. Passage to complex coordinates. We will consider a surface ¥ with global
smooth coordinates 7!,72 (so one can think of ¥ as an open part of R?). Two real
coordinates can be viewed as one complex coordinate z = 7! + i72. So they define a
complex structure on ¥ such that z is a holomorphic coordinate and z = 7! — ir? is an
anti-holomorphic function.

Here we just list the formulas for a metric g and the inverse metric g, that relate the
real coordinates 7° to z, Z.

E.2.1. Notational conventions. We will denote a holomorphic function by ¢(z), an anti-
holomorphic function by 1(Z), and a function which is neither by f(z, Z) (though Z con-
tains no new information). We will use

e the frame 0; = 0, of T’ given by the real coordinates, and
e the frame of the complexified tangent bundle (7X)c associated to the
(anti)holomorphic coordinates z, Z

€: € ]- . ade: € 1 .
X 5, 501 —id) and 0% 9, 501 +iy).
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E.2.2. Lemma. (a) 0z =1, 0z =1.
(b) 0, O kill respectively holomorphic and anti-holomorphic functions.
(c) One has 8, = O+ 0 and 9, = (0 —9)/i = (0 — 0).

E.2.3. Metrics. We will extend a metric g to a C-bilinear form on the complexification

(T'Y)¢ and denote

0::= 9(8,0), ¢7¥ g(dz,dz), ete.

Lemma. The transition formulas for metrics g and ¢g~! are are

(1) (gzz gzz> _ i (911 — go2 — 20912 911 + 922 . )
9z Yzz g11 + g2 gi1 — Go2 + 2i-g12)’

@) (911 912> _ (2945 +0er+ 0z 1(9ee — 922) )
g1 922 (920 — 922) 2022 — G2z — 92z

o (0 ) (M L, )
9= g9~ gty 9 —g" - 2vgT)

(4) gll 912 _ 1 29z2+gzz +_922 _i—(gzz_gi,?)“
4 _Z(gzz _ gzz) 292z _ gzz _ gzz .

Proof. (1) We calculate slowly,

N—r

9. = 9(0,0) = ig(al —i0, 01 — 102) = %(911 — g2 — 2i-g12) = Tzz,
9.2 = 9(0, 3) = ig(al — i0y,01 +10;) = i(gn + g22)-

In the opposite direction, 1(g11 — g22) = g2z + g2z and gio = %(gzz = G22)-
(3) Similarly,

g% = g Ydz,dz) = g(drt +idr?,dr! +idt?) = ¢g'' — ¢*2 + 2i-g'? = ¢7% and
g7 = g(dz,dz) = g(dr' +idr?, dr' —idr?) = ¢g'' + ¢*2.

This inverts to g'' — ¢** = 1(¢°* + ¢*) and ¢'? = L(¢°* — ¢*).

Remarks. We will redo the above coordinate change formulas completely in matrices.

e (1) The coordinates and differentials transform by A = (} #;)and A=t =1 (1, 1),

(2)=A(7), ie, (L)=A471(%) B

Observe that %A is a unitary matrix, i.e., A = %A.

e (2) The dual frames of vector fields use A" = (} %) and A= =1 (] 7%) =

i —i 14
(5) =4 (%) and (3) =47 (3)
e (3) The matrix of a metric g transforms by

(g =A™ (B g A7 =5 (15)- (B 63 (L) =1 (O oneis)-
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e (4) The dual quadratic form g~! transforms by
gzz gzz' _ . gll 912 . tr 1 Z . gll 912 . 1 1 _ gll+i921 gl2+ig22
(giz 922) = A (921 922) AT = (1 71) (g21 922) (z —z) = (gll_ig21 g12—ig22> .
0 81 —tr .
For (3) we use 5) = ) 5 ) for ¢ = A7". From (3) to (4) we replace pA~"" with
p

¢ = A. Then, A* = 1A gives ¢* = 2¢, hence ¢ " = 24, so compared with the
preceding calculation, all coefficients will be multiplied by 4 and conjugated.

E.3. The case of conformally flat complex coordinates. We will compute the stress
tensor T' = T'[z, g] in a holomorphic coordinate conformally flat to g. In particular, at

the criticality in z it will reduce to one holomorphic function T'(2) o T(0,0).

We start with a Riemannian metric g on an oriented surface (X, or). It gives a complex
structure C on X, and we use any local holomorphic coordinate z. In this “conformally flat
coordinate” g has a very simple form: it is a multiple of the z-standard metric g (the pull

back of the standard metric on C = R?), i.e., g is conformal to g,;. This will give a simple
setting for g-calculations. We use z, z and the real coordinates 7! = Re(z), 72 = Im(z).

E.3.1. Lemma. (a) Metrics g and (the z-pull-back of) g5 are conformal: g = w-gg.

(b) In real coordinates the metric is given by a scalar matrix and in complex coordinates
0 and 0 are isotropic

_ ij _ - _
gij = Oyw, g7 = 0w, w= g

9zz  Yez 0 %w) (g“ gzz) ( 0 2/w) _ 5
= and e | = , w= 2¢,; =2¢(0,0).
(QZz 922) (%w 0 g~ g 2/w 0 9 9(9,0)

(c) The Laplacian is ngzef 999,0; = 100
(d) The velocity is (dz)§ , = 2 0z o ox.

Proof. (a) The complex structures associated to g and g coincide! (b) If g = g the
formulas for g;; are clear, and then the general case follows. Now, the formulas with z, z
follow using the transition matrices above

1

1 .
(911 4+ 922) = zwW, Qoo = Gzz = 1 (911 — go2 — 2ig12) = 0.

9zz = 0z = 2

] =

(c) V2 419,09, = L(82+8,%) = L(@+0)>— L(@-0)>= 19a.
(d) (dz)g, = Oix"-0;2"-Gpug” = w -Bia"-0ix"-G . So, w-(dz)g , equals

[(040)z"-(0+0)z" -+ i(0—0)x"-i(0—0)x"] G = [202"-02” + 202”-02") G, = 4 02"-03"-G -
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E.3.2. Corollary. For a given Euclidean metric g on a surface X, locally in ¥ we can
choose coordinates so that g is conformal to the Euclidean metric g;; = 9;.

Proof. The Complex Variables proof. This is really the lemma E.3.1.a.

We will also give a Differential Geometry proof . (1) Locally, one can find a function
w > 0 such that wg has Ricci tensor zero.

(2)Since dim(X) = 2, the vanishing of the Ricci tensor implies the same for the curvature
(Riemann tensor). (Curvature R is determined by R(01, 02), i.e., by R(01,02)0y = Riy,0,,
use the symmetries of the Riemann tensor.)

(3) A flat metric G (i.e., with zero curvature), is “coordinate equivalent” to the unit one

(i.e., locally one can choose the coordinates which identify g with the standard metric in
R™).
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Part X. Topics
APPENDIX F. Classical mechanics

F.1. Symmetries, conserved quantities (momenta) and moment maps. The
main observation is that any conserved quantity, i.e., a function f on T*C which is

constant on momentum curves, gives a Poisson map T*C 4R, Then one can interpret it
as the moment map for R acting on T*C by the vector field f which fixes the Hamiltonian
function. So,

Conserved quantities are the same as infinitesimal symmetries.
(and this gives them a moment map interpretation).

Since the conserved quantities have a moment map interpretation, they are also called
momenta.

Bellow, we notice that this works for any continuous group of symmetries. We follow [P.
Shannahan].

F.1.1. Intro. The standard situation is a group G of symmetries of the configuration space
C, so G acts on C and fixes the equation of motion (Newton’s equation). The consequence
in the Lagrangian approach is that G acts on T'C and fixes the Lagrangian function. The
consequence in the Hamiltonian approach is that G acts on the symplectic manifold T*C
and fixes the Hamiltonian function. The corresponding moment map pg : 7°C — g* has
the properties:

(1) Evolution curves are trapped inside the fibers of the moment map pg (see
Noether’s theorem F.1.4).

(2) Therefore, functions on g* are conserved quantities on 7*C.

(3) “Any” conserved quantity produces an infinitesimal symmetry of the system, called
the Noether charge.

F.1.2. Symmetries. The standard appearance of symmetries is a group G of symmetries
of the configuration space C, here G acts on C and fixes the equation of motion (Newton’s
equation). The consequence in the Lagrangian approach is that G acts on TC and fixes
the Lagrangian function. The consequence in the Hamiltonian approach is that G acts
on the symplectic manifold 7*C and fixes the Hamiltonian function.

F.1.3. Conserved quantities. This are observables that are constant along the evolution
curves. For instance:

(1) Momentum is conserved iff there is no force (F = %).

(2) More generally, if ¢; does not appear in the Lagrangian L then p; is a conserved
quantity.
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One calls the coordinates ¢; and p; conjugate, and says that “p; is the conjugate momentum
to (][” .

F.1.4. Noether‘s theorem.

Theorem. Suppose that the Lagrangian L on T'M is invariant under the action of a group
G on M. Then for any a € g,

(p(1); ag(r))
1s constant.

F.1.5. Momentum map J : TM—g*. It is defined using the Lagrangian L on T'M. For
v €T, M and a € g,

def

(Jv,a)= dyL .

In terms of the momentum map, Noether‘s theorem says that Jv is constant along the
velocity curves in T'M.

F.1.6. Noether‘s theorem. “Any conserved quantity defines an infinitesimal symmetry.”
More precisely, the conserved quantities given by the moment map form the algebra
O(g*) = S(g) generated by g which does produce infinitesimal symmetries!

F.1.7. Remark. Notice that if the typical conserved quantities are the functions on g*,
then there is a particular kind of “doubly” conserved quantities: the G-invariant functions
on g*. This should be the kind that is not touched by quantization. (Or we can just mean
the functions on the Invariant theory quotient 7%C//G.)

F.1.8. Summary. Various kinds of “momenta” in physics are related to specific symme-
tries of particular systems.

The simplest example is when the translation in the direction of the position coordinate
q; preserves the Lagrangian L on TM. This infinitesimal symmetry a% produces the
moment map which is the same as the associated momentum ¢;, which is a conserved
quantity.

F.1.9. The momentum covector associated to the velocity vector v. This means the canon-
ical 1-form 7 = Y p;-dg; on T*C, makes it the isomorphism 7¢—T*C given by the kinetic

energy(?).

F.2. Relativistic free particle as a constrained system. We just touch upon the
idea of constrained systems.
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F.2.1. The mass-shell constraint. The size of the canonical momentum (for the length
action at least) is constrained by the mass:

p* +m? = 0,
: C2 o MTu  mi, v 2, &% _ 2
see lemma 1.3.2.4, or directly: p* = p,p,n"" = T v = mt T = —m

F.2.2. Canonical Hamiltonian H.., and the Hamiltonian with a constraint H.,ns. By
the canonical Hamiltonian we mean the one given by the standard relation between the

Lagrangian and Hamiltonian
I-Icand:ef —p-jj — L.
However, in this free particle case it is identically zero since

- -2
mz, . m -
BogH = = mv—-z2= L.

/—i2 2

pz = puat =
The interpretation is that

all dynamics comes from the constraint.

Therefore, we add the mass-shell constraint to the Hamiltonian

def
Hconst :e Hcan + )\(PQ + mZ)’

here ) is the Lagrange multiplier.

F.2.3. Canonical formalism. The Lagrangian L defines the canonical momentum p = L;
and also the Hamiltonian H. The Poisson structure is then described in terms of the
canonical momentum by standard equations

{xli’ pu}d:ef 5;w-

Finally, the evolution is given by the Poisson structure and the Hamiltonian:
= {z", H}.
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