Math 545 Midterm $2 \quad$ Spring 2012

Name: \qquad

Show all your work and justify all your answers!

1. (25 points) Let A and B be similar $n \times n$ matrices, i.e., assume that there exists an invertible $n \times n$ matrix P, such that $B=P^{-1} A P$. All matrices above are assumed to have entires in the same field F.
(a) Use the algebraic properties of the determinant to prove that $\operatorname{det}(B)=$ $\operatorname{det}(A)$.
(b) Prove that $A-\lambda I$ and $B-\lambda I$ are similar matrices, for every scalar λ.
(c) Prove that the characteristic polynomials of A and B are equal.
(d) Show that v is an eigenvector of B with eigenvalue λ, if and only if $P v$ is an eigenvector of A with eigenvalue λ.
(e) Let $f(x)$ be a polynomial with coefficients in F. Show that $f(A)$ and $f(B)$ are similar matrices. Use it to conclude that $f(A)=0$, if and only if $f(B)=0$.
(f) Prove that the minimal polynomial $m_{A}(x)$ of A is equal to the minimal polynomial $m_{B}(x)$ of B.
2. (20 points) Set $A:=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right)$.
(a) Find the characteristic polynomial $h(x)$ of A. Show your work!
(b) Find the minimal polynomial $m(x)$ of A in the polynomial ring $\mathbb{C}[x]$. Do not forget to carefully justify your answer!
(c) Show that A is not similar to a diagonal matrix in $M_{3}(\mathbb{R})$.
(d) Find a basis of \mathbb{C}^{3} consisting of eigenvectors of A. Hint: Use the notation η for the third root of unity $\cos (2 \pi / 3)+i \sin (2 \pi / 3)=(-1+\sqrt{3} i) / 2$. Express your answer in terms of powers of η, in order to simplify the notation and the computations.
(e) Find an invertible matrix P and a diagonal matrix D, both in $M_{3}(\mathbb{C})$, such that $P^{-1} A P=D$.
3. (15 points) Factor the polynomial $x^{8}-1$ into its prime factors in $\mathbb{C}[x]$, then in $\mathbb{R}[x]$, and then in $\mathbb{Q}[x]$ (for the latter, you may assume that $\sqrt{2}$ is not a rational number). Prove that each factor you found it prime. Hint: Sketch all the 8 -th roots of unity on the unit circle.
4. (20 points) Set $A:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2\end{array}\right)$.
(a) Find the characteristic polynomial $h(x)$ of A.
(b) Find the minimal polynomial $m(x)$ of A.
(c) Show that the primary decomposition of \mathbb{R}^{4} induced by A is a direct sum of two subspaces V_{1} and V_{2} and find a basis β_{i} for each $V_{i}, i=1,2$.
(d) Let β be the union of the bases β_{1} and β_{2} you found above. Find the matrix $[A]_{\beta}$ with respect to the basis β.
5. (20 points) Let $\mathcal{F}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R}. For each positive integers n, let V_{n} be the subspace spanned by the set $\beta_{n}:=\left\{e^{t}, t e^{t}, \ldots, t^{n} e^{t}\right\}$. Let $D: V_{n} \rightarrow V_{n}$ be the differentiation operator.
(a) Let $n=3$. Find the 4×4 matrix of D in the basis β_{3}.
(b) Find the minimal polynomial of D (for all n). Prove your answer.
(c) Show that the differentiation linear transformation $D: V_{n} \rightarrow V_{n}$ is not diagonalizable.
