Show all your work and **justify** all your answer.

- 1. (20 points) Let V be an n dimensional vector space over \mathbb{R} and let $T:V\to\mathbb{R}^1$ be a non-zero linear transformation from V to the one-dimensional space \mathbb{R}^1 . Prove that $\dim(\ker(T)) = n - 1$.
- 2. (20 points) Let V be an inner product space and w a non-zero vector in V. Define the reflection $R_w: V \to V$ by

$$R_w(v) = v - \frac{2(v,w)}{(w,w)}w. \tag{1}$$

- (a) Prove that the reflection R_w is an orthogonal transformation. You may assume that R_w is a linear transformation.
- (b) Let $C([-\pi,\pi])$ be the vector space of real valued functions defined and continuous on the interval $[-\pi,\pi]$. Endow $C([-\pi,\pi])$ with the inner product $(f,g) := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$. Let V be the subspace of $([-\pi,\pi])$ spanned by the set $\beta := \{\cos(x), \cos(2x), \cos(3x)\}$. Recall that β is an orthonormal set. Set $w = \cos(x) + \cos(2x) + \cos(3x)$. Let $R_w : V \to V$ be the reflection given by equation (1). Find the matrix $[R_w]_{\beta}$ with respect to the basis β of V.
- (c) Keep the notation of part 2b. Explain, without any computations, why the matrix $[R_w]_{\beta}$ of R_w with respect to the basis β of V is an orthogonal matrix. State any theorem you use.
- (d) Check that your matrix in part 2b is indeed an orthogonal matrix.
- 3. (20 points) Consider \mathbb{R}^4 as an inner product space with respect to the dot product. Let W be the subspace of \mathbb{R}^4 cut out by the equations

$$x_1 + x_2 + x_3 + x_4 = 0, (2)$$

$$x_1 + 2x_2 + x_3 - x_4 = 0. (3)$$

- (a) Find a basis for W. Justify your answer!
- (b) Use the Gram-Schmidt process and the basis you found in part 3a in order to find an orthonormal basis for W.
- (c) Show that the distance from the vector (0, 1, 2, 1) to the subspace W is 2.
- 4. (20 points) Let V be an n dimensional inner product space.
 - (a) Let $\beta = \{u_1, \dots, u_n\}$ and $\tilde{\beta} := \{\tilde{u}_1, \dots, \tilde{u}_n\}$ be two orthonormal bases of V. Prove that there exists a unique orthogonal transformation $T:V\to V$ satisfying $T(u_i) = \tilde{u}_i$, for $1 \leq i \leq n$. Carefully state every theorem you use.

- (b) Let W be a subspace of V of dimension k, 0 < k < n. Prove that every orthonormal basis $\{u_1, \ldots, u_k\}$ of W can be extended to an orthonormal basis of V. Hint: Use a property of the Gram-Schmidt process.
- (c) Fix a positive integer k satisfying k < n. Let W_1 and W_2 be two subspaces of V of dimension k. Prove that there exists an orthogonal transformation $T: V \to V$ such that $T(W_1) = W_2$.
- 5. (20 points) Denote by E_{ij} the 3×3 matrix with 1 at the (i,j) entry and zero elsewhere. Then $\beta := \{E_{12}, E_{13}, E_{23}\}$ is a basis of the vector space U of 3×3 strictly upper triangular matrices. Let D be the vector space of 3×3 diagonal matrices. Given a diagonal matrix A, denote by $T_A : U \to U$ the linear transformation

$$T_A(B) = AB - BA. (4)$$

- (a) Let $A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$. Find the matrix $[T_A]_\beta$ of T_A with respect to the basis β of U given above. Express your answer in terms of the diagonal entries d_1, d_2, d_3 of A.
- (b) Assume that d_1 , d_2 , d_3 are three distinct scalars. Prove that the linear transformation T_A is invertible, where A is the diagonal matrix given in part 5a.
- (c) Let $T: D \to L(U, U)$ be the linear transformation sending a diagonal matrix A to the linear transformation T_A given in equation (4), so that $T(A) = T_A$. Find the dimensions of the kernel and image of T. Carefully justify your answer.
- (d) Show that there exists a diagonal matrix A, as in part 5b, such that T_A is invertible, but the inverse $(T_A)^{-1}$ is **not** of the form T_B , for any diagonal matrix B. Hint: Use part 5c.