\qquad
Show all your work and justify all your answer.

1. (20 points) Let V be an n dimensional vector space over \mathbb{R} and let $T: V \rightarrow \mathbb{R}^{1}$ be a non-zero linear transformation from V to the one-dimensional space \mathbb{R}^{1}. Prove that $\operatorname{dim}(\operatorname{ker}(T))=n-1$.
2. (20 points) Let V be an inner product space and w a non-zero vector in V. Define the reflection $R_{w}: V \rightarrow V$ by

$$
\begin{equation*}
R_{w}(v)=v-\frac{2(v, w)}{(w, w)} w . \tag{1}
\end{equation*}
$$

(a) Prove that the reflection R_{w} is an orthogonal transformation. You may assume that R_{w} is a linear transformation.
(b) Let $C([-\pi, \pi])$ be the vector space of real valued functions defined and continuous on the interval $[-\pi, \pi]$. Endow $C([-\pi, \pi])$ with the inner product $(f, g):=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$. Let V be the subspace of $([-\pi, \pi])$ spanned by the set $\beta:=\{\cos (x), \cos (2 x), \cos (3 x)\}$. Recall that β is an orthonormal set. Set $w=\cos (x)+\cos (2 x)+\cos (3 x)$. Let $R_{w}: V \rightarrow V$ be the reflection given by equation (1). Find the matrix $\left[R_{w}\right]_{\beta}$ with respect to the basis β of V.
(c) Keep the notation of part 2 b . Explain, without any computations, why the matrix $\left[R_{w}\right]_{\beta}$ of R_{w} with respect to the basis β of V is an orthogonal matrix. State any theorem you use.
(d) Check that your matrix in part 2 b is indeed an orthogonal matrix.
3. (20 points) Consider \mathbb{R}^{4} as an inner product space with respect to the dot product. Let W be the subspace of \mathbb{R}^{4} cut out by the equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0, \\
x_{1}+2 x_{2}+x_{3}-x_{4}=0 . \tag{3}
\end{array}
$$

(a) Find a basis for W. Justify your answer!
(b) Use the Gram-Schmidt process and the basis you found in part 3a in order to find an orthonormal basis for W.
(c) Show that the distance from the vector $(0,1,2,1)$ to the subspace W is 2 .
4. (20 points) Let V be an n dimensional inner product space.
(a) Let $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\tilde{\beta}:=\left\{\tilde{u}_{1}, \ldots, \tilde{u}_{n}\right\}$ be two orthonormal bases of V. Prove that there exists a unique orthogonal transformation $T: V \rightarrow V$ satisfying $T\left(u_{i}\right)=\tilde{u}_{i}$, for $1 \leq i \leq n$. Carefully state every theorem you use.
(b) Let W be a subspace of V of dimension $k, 0<k<n$. Prove that every orthonormal basis $\left\{u_{1}, \ldots, u_{k}\right\}$ of W can be extended to an orthonormal basis of V. Hint: Use a property of the Gram-Schmidt process.
(c) Fix a positive integer k satisfying $k<n$. Let W_{1} and W_{2} be two subspaces of V of dimension k. Prove that there exists an orthogonal transformation $T: V \rightarrow V$ such that $T\left(W_{1}\right)=W_{2}$.
5. (20 points) Denote by $E_{i j}$ the 3×3 matrix with 1 at the (i, j) entry and zero elsewhere. Then $\beta:=\left\{E_{12}, E_{13}, E_{23}\right\}$ is a basis of the vector space U of 3×3 strictly upper triangular matrices. Let D be the vector space of 3×3 diagonal matrices. Given a diagonal matrix A, denote by $T_{A}: U \rightarrow U$ the linear transformation

$$
\begin{equation*}
T_{A}(B)=A B-B A \tag{4}
\end{equation*}
$$

(a) Let $A=\left(\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right)$. Find the matrix $\left[T_{A}\right]_{\beta}$ of T_{A} with respect to the basis β of U given above. Express your answer in terms of the diagonal entries d_{1}, d_{2}, d_{3} of A.
(b) Assume that d_{1}, d_{2}, d_{3} are three distinct scalars. Prove that the linear transformation T_{A} is invertible, where A is the diagonal matrix given in part 5a.
(c) Let $T: D \rightarrow L(U, U)$ be the linear transformation sending a diagonal matrix A to the linear transformation T_{A} given in equation (4), so that $T(A)=T_{A}$. Find the dimensions of the kernel and image of T. Carefully justify your answer.
(d) Show that there exists a diagonal matrix A, as in part 5 b , such that T_{A} is invertible, but the inverse $\left(T_{A}\right)^{-1}$ is not of the form T_{B}, for any diagonal matrix B. Hint: Use part 5 c .

