
Math 545 Solution of Final Exam Spring 2007

1. Let V be a finite dimensional vector space over C and T : V → V a linear
transformation, such that T r = 1, for some positive integer r. Prove that T is
diagonalizable.

Answer: Let f(x) = xr−1. Then f(T ) = 0. Hence, the minimal polynomial m(x)
of T divides f(x). Now f(x) =

∏r

k=0(x− ξk), where ξ := cos(2π/r)+ i sin(2π/r) is
a primitive root of unity. Hence, f(x) is a product of distinct linear monic terms.
Thus, so is any polynomial of positive degree dividing f(x), and in particular, so is
m(x). By a theorem, T is diagonalizable over a field F , if and only if its minimal
polynomial m(x) factors as a product of distinct monic linear terms in F [x].

2. Let A =

(
0 −1
1 −1

)
. Find an invertible matrix P and a diagonal matrix D, both

with entries in C, such that P−1AP = D.

Answer: The characteristic polynomial is x2+x+1. The two complex eigenvalues
are λ1 = −(1/2) + i

√
3/2 and λ2 = −(1/2) − i

√
3/2. Take P to be the matrix(

1
2

+
√

3
2

i 1
2
−

√
3

2
i

1 1

)
, so that its first column is a λ1 eigenvector and its second

column is a λ2 eigenvector. Then P−1AP =

(
−1

2
+

√
3

2
i 0

0 −1
2
−

√
3

2
i

)
.

3. (a) Find an orthonormal basis of R2, which exhibits the principal axes of the
quadratic form Q(x, y) = 17x2 + 12xy + 8y2.

Answer: Q(x, y) = (x, y)S

(
x
y

)
, where S is the symmetric matrix

(
17 6
6 8

)
.

The characteristic polynomial of S is (x− 5)(x− 20). The principal axes are

the eigenlines of S. The vector u1 = 1√
5

(
2
1

)
is a unit 20-eigenvector and

the vector u2 = 1√
5

(
−1
2

)
is a unit 5-eigenvector. The two vectors are or-

thogonal, as expected by the Principal Axis Theorem (31.9) in the text, and
so {u1, u2} is an orthonormal basis for R2.

(b) Find the matrix P of a rotation of R2, and a diagonal matrix D, such that

Q(x, y) = (x, y)PD(P t)

(
x
y

)
. Explain why the P you found is a matrix of

a rotation and why the above equality holds.

Answer: Take P = (u1u2) = 1√
5

(
2 −1
1 2

)
. Then P is an orthogonal

matrix with det(P ) = 1, and is thus the matrix of a rotation. Now P tSP =

P−1SP =

(
20 0
0 5

)
=: D. So S = PDP t and Q(x, y) = (x, y)S

(
x
y

)
=

(x, y)PD(P t)

(
x
y

)
.

(c) Use your work above to sketch the graph of 17x2 + 12xy + 8y2 = 5, clearly
indicating the principal axes and the coordinates of their points of intersection
with the graph.
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Answer: Set β := {u1, u2} and consider x̃ and ỹ as the β-coordinates of

the vector x̃u1 + ỹu2 = P

(
x̃
ỹ

)
. Now draw in the x̃, ỹ plane the ellipse

20x̃2 + 5ỹ2 = 5 and in the x, y plane the ellipse 17x2 + 12xy + 8y2 = 5 and
state that the rotation P takes the first ellipse (with the x̃ and ỹ axes as its
principal axes) to the second ellipse.

(d) Find an orthogonal (but not orthonormal) basis β = {v1, v2} of R2, such that
the matrix of Q with respect to β is the identity matrix. Hint: Use your

diagonalization in part 3b.

Answer: Take P̃ = P

(
1√
20

0

0 1√
5

)
= 1

10

(
2 −2
1 4

)
. Then P̃ tSP̃ = I.

4. Parts 4c to 4f below are independent of parts 4a and 4b.

(a) Let u1 and u2 be two unit vectors in R3 and let Rui
be the reflection

Rui
(v) = v − 2(ui, v)ui

of R3 with respect to the plane u⊥
i orthogonal to ui. Prove that the compo-

sition Ru2
◦ Ru1

is a rotation of R3.

Answer: Rui
is an orthogonal transformation and det(Rui

) = −1. The
composition of orthogonal transformations is an orthogonal transformation.
Hence, Ru2

◦Ru1
is an orthogonal transformation. Its determinant is det(Ru2

◦
Ru1

) = det(Ru2
) det(◦Ru1

) = (−1)2 = 1. Hence, Ru2
◦ Ru1

is a rotation.

(b) Let u1 =




1√
2

1√
2

0


, u2 =




1√
2

0
1√
2


, and A :=




0 0 −1
−1 0 0
0 1 0


 . Show that

Ru2
◦ Ru1

is equal to multiplication by the matrix A.

Answer: A straight forward calculation.

(c) Find a unit vector v1, which spans the axis of the rotation of R
3 with matrix

A given in part 4b.

Answer: The axis of the rotation is the eigenline with eigenvalue 1. It is

spanned by the unit vector v1 := 1√
3




−1
1
1


.

(d) Set v2 := u1, where u1 is the vector in part 4b. Complete it to an orthonormal
basis {v2, v3} of the plane v⊥

1 orthogonal to the axis of the rotation A.

Answer: A vector v is orthogonal to v1 and v2, if and only if it is in the kernel

of the matrix

(
−1 1 1
1 1 0

)
. Such is the unit vector v3 := 1√

6




−1
1
−2


.

(e) Find the matrix P of a rotation of R3, whose second column is the vector

u1 in part 4b, such that P−1AP =




1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 is in the normal

form of the Structure Theorem for Orthogonal Transformations. Hint: The

columns of P should be a suitable orthonormal basis of R3 and det(P ) = 1.
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Answer: The matrix P := (v1v2v3) =




−1√
3

1√
2

−1√
6

1√
3

1√
2

1√
6

1√
3

0 −2√
6


 is orthogonal, of

determinant 1, hence the matrix of a rotation. P (e1) = v1, hence, P−1AP
has the desired form, by Theorem (30.5) in the text.

(f) Show that the angle of the rotation A is θ = 2π
3

or θ = −2π
3

, depending on the
sign of v1.

Answer: The angle of rotation θ is the angle between v2 and Av2 and cos(θ) =
(Av2, v2) = −(1/2). The angle from Av2 to v3 is π/2−θ and sin(θ) = cos(π/2−θ) =
(Av2, v3) = −

√
3/2.

5. Find the solution (y1(t), y2(t)) of the system

∂y1

∂t
= y1 + y2

∂y2

∂t
= −y1 + 3y2

satisfying y1(0) = 0 and y2(0) = 1. Hint: The matrix A of the system satisfies

P−1AP =

(
2 1
0 2

)
, where P =

(
1 −1
1 0

)
.

Answer: The solution of the system of ordinary differential is

(
y1(t)
y2(t)

)
=

etA

(
0
1

)
. Now A = P

(
2 1
0 2

)
P−1 = P (2I + N)P−1, where N :=

(
0 1
0 0

)
.

Hence,
etA = etP (2I+N)P−1

= Pet(2I+N)P−1 = P (e2tIetN )P−1.

Now etI =

(
e2t 0
0 e2t

)
and etN = I + tN + 1

2
t2N2 + · · ·. The power Nd vanishes,

for d > 1, and so etN = I + tN =

(
1 t
0 1

)
. Multiplying out we get etA =

e2t

(
1 − t t
−t 1 + t

)
and the final solution is:

(
y1(t)
y2(t)

)
=

(
te2t

(1 + t)e2t

)
.

6. Let A =




2 0 0
−7 −1 4
−2 −1 3


 and work over the field R of real numbers.

(a) Show that the characteristic polynomial of A is (x − 1)2(x − 2).

(b) Find a basis for each eigenspace of A.

Answer: v1 :=




0
2
1


 spans the 1-eigenspace and v2 :=




1
−1
1


 spans the

2-eigenspace.

(c) Check that each vector you found in part 6b is indeed an eigenvector!

Answer: Chech that Av1 = v1 and Av2 = 2v2.
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(d) Find the minimal polynomial of A. Justify your answer!

Answer: If the characteristic polynomial is the product p1(x)d1 · · · pr(x)dr ,
with {p1, . . . , pr} distinct monic prime polynomials, then m(x) = p1(x)e1 · · · pr(x)er ,
where 1 ≤ ei and ei is the minimal positive integer e, such that

dim (ker[pi(A)e]) = di deg(pi(x)),

as the right hand side above is the dimension of the direct summand Vi :=
ker (pi(A)ei), in the Primary Decomposition Theorem, by the Triangular Form
Theorem.

Set p1(x) = x − 1 and p2(x) = x − 2. Then 1 ≤ e2 ≤ d2 = 1, so e2 = 1. Now
1 ≤ e1 ≤ d1 = 2. In addition, dim ker(p1(A)) = dim ker(A − I) = 1 < d1.
Hence, e1 = 2 and

m(x) = (x − 1)2(x − 2).

(e) Find a basis for each Vi in the Primary Decomposition R3 = V1 ⊕ V2 with
respect to A.

Answer: V1 = ker(p1(A)e1) = ker ((A − I)2) is spanned by








0
1
0


 ,




0
0
1






 .

V2 = ker(p2(A)e2) = ker(A − 2I) is spanned by v2 given in part 6b above.

(f) Find the elementary divisors of A. Carefully justify your answer!

Answer: We need to find a subdecomposition, of each summand V1, V2, in
the primary decomposition, into a direct sum of cyclic subspaces with respect
to A. If Vi = 〈u1〉 ⊕ 〈u2〉 ⊕ · · ·, then the orders mu1

(x), mu2
(x), . . . , are

elementary divisors of A.

Now V2 is one dimensional and is hence cyclic. Thus, p2(x) = (x − 2) is an
elementary divisor.

Consider next the two dimensional V1. Any vector w in V1, which is not a
1-eigenvector, will have the property that {w, Aw} are linearly independent.
Such a w exists, since V2 is two-dimensional and the 1-eigenspace is one-
dimensional. Hence, V1 = 〈w〉 is cyclic. The order mw(x) of w is the minimal
polynomial of the restriction A〈w〉 of A to 〈w〉, i.e., to V1. We have seen that
the latter is (x− 1)2. Hence, p1(x)e1 = (x− 1)2 happens to be an elementary
divisor as well.

Remark: The product of the elementary divisors is always equal to the
characteristic polynomial. A homework problems was assigned, titled “con-
tinuation of problem 8 in section 25, page 226”. In that homework problem
you proved that the summands in the primary decomposition are all cyclic, if
and only if the minimal polynomial m(x) is equal to the characteristic poly-
nomial. In this case, the elementary divisors are simply the maximal prime
powers which divide the minimal polynomial. However, you were expected
to provide here a complete and more elementary justification.

(g) Find the Jordan canonical form of A.

Answer: The elementary divisors p1(x)e1 := (x− 1)2 and p2(x)e2 = (x− 2)1

of A determine its Jordan Canonical Form (Theorem 25.16 and Definition
25.17). An elementary divisor of the form (x− λ)e contributes to the Jordan
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canonical form an e × e block with λi in all its diagonal entries and 1 in all
the entries immediately above the diagonal (see bottom of page 224 in the

text). Thus, our Jordan canonical form is:




1 1 0
0 1 0
0 0 2



 .

(h) Find an invertible matrix P , such that P−1AP is in Jordan canonical form.
Describe your method in complete sentences! Credit will not be given to a
solution found by trial and error.

Answer: We follow the procedure of Lemma 25.12, in the special case that
all di = 1 (the prime polynomials are all of degree 1, but powers ei may be
positive). When d = 1 and 〈w〉 is cyclic with elementary divisor (x − λ)e,
then we choose in Lemma 25.12 for 〈w〉 the basis

{
(A − λI)e−1w, (A − λI)e−2w, · · · , (A − λI)1w, w

}

consisting of e vectors with this specific order.

In our case we can choose the cyclic vector w =




0
1
0


 (w is in V1, but w

is not a 1-eigenvector). Then (A − I)w =




0
−2
−1


. For V2 we choose the

2-eigenvector v2. Take

P = ((A − I)w w v2) =




0 0 1
−2 1 −1
−1 0 1


 .

Then P−1AP is in the Jordan canonical form in part 6g.
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