1. Let V be a finite dimensional vector space over \mathbb{C} and $T: V \rightarrow V$ a linear transformation, such that $T^{r}=1$, for some positive integer r. Prove that T is diagonalizable.
Answer: Let $f(x)=x^{r}-1$. Then $f(T)=0$. Hence, the minimal polynomial $m(x)$ of T divides $f(x)$. Now $f(x)=\prod_{k=0}^{r}\left(x-\xi^{k}\right)$, where $\xi:=\cos (2 \pi / r)+i \sin (2 \pi / r)$ is a primitive root of unity. Hence, $f(x)$ is a product of distinct linear monic terms. Thus, so is any polynomial of positive degree dividing $f(x)$, and in particular, so is $m(x)$. By a theorem, T is diagonalizable over a field F, if and only if its minimal polynomial $m(x)$ factors as a product of distinct monic linear terms in $F[x]$.
2. Let $A=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$. Find an invertible matrix P and a diagonal matrix D, both with entries in \mathbb{C}, such that $P^{-1} A P=D$.
Answer: The characteristic polynomial is $x^{2}+x+1$. The two complex eigenvalues are $\lambda_{1}=-(1 / 2)+i \sqrt{3} / 2$ and $\lambda_{2}=-(1 / 2)-i \sqrt{3} / 2$. Take P to be the matrix $\left(\begin{array}{cc}\frac{1}{2}+\frac{\sqrt{3}}{2} i & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\ 1 & 1\end{array}\right)$, so that its first column is a λ_{1} eigenvector and its second column is a λ_{2} eigenvector. Then $P^{-1} A P=\left(\begin{array}{cc}-\frac{1}{2}+\frac{\sqrt{3}}{2} i & 0 \\ 0 & -\frac{1}{2}-\frac{\sqrt{3}}{2} i\end{array}\right)$.
3. (a) Find an orthonormal basis of \mathbb{R}^{2}, which exhibits the principal axes of the quadratic form $Q(x, y)=17 x^{2}+12 x y+8 y^{2}$.
Answer: $Q(x, y)=(x, y) S\binom{x}{y}$, where S is the symmetric matrix $\left(\begin{array}{cc}17 & 6 \\ 6 & 8\end{array}\right)$. The characteristic polynomial of S is $(x-5)(x-20)$. The principal axes are the eigenlines of S. The vector $u_{1}=\frac{1}{\sqrt{5}}\binom{2}{1}$ is a unit 20 -eigenvector and the vector $u_{2}=\frac{1}{\sqrt{5}}\binom{-1}{2}$ is a unit 5 -eigenvector. The two vectors are orthogonal, as expected by the Principal Axis Theorem (31.9) in the text, and so $\left\{u_{1}, u_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
(b) Find the matrix P of a rotation of \mathbb{R}^{2}, and a diagonal matrix D, such that $Q(x, y)=(x, y) P D\left(P^{t}\right)\binom{x}{y}$. Explain why the P you found is a matrix of a rotation and why the above equality holds.
Answer: Take $P=\left(u_{1} u_{2}\right)=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$. Then P is an orthogonal matrix with $\operatorname{det}(P)=1$, and is thus the matrix of a rotation. Now $P^{t} S P=$ $P^{-1} S P=\left(\begin{array}{cc}20 & 0 \\ 0 & 5\end{array}\right)=: D$. So $S=P D P^{t}$ and $Q(x, y)=(x, y) S\binom{x}{y}=$ $(x, y) P D\left(P^{t}\right)\binom{x}{y}$.
(c) Use your work above to sketch the graph of $17 x^{2}+12 x y+8 y^{2}=5$, clearly indicating the principal axes and the coordinates of their points of intersection with the graph.

Answer: Set $\beta:=\left\{u_{1}, u_{2}\right\}$ and consider \tilde{x} and \tilde{y} as the β-coordinates of the vector $\tilde{x} u_{1}+\tilde{y} u_{2}=P\binom{\tilde{x}}{\tilde{y}}$. Now draw in the \tilde{x}, \tilde{y} plane the ellipse $20 \tilde{x}^{2}+5 \tilde{y}^{2}=5$ and in the x, y plane the ellipse $17 x^{2}+12 x y+8 y^{2}=5$ and state that the rotation P takes the first ellipse (with the \tilde{x} and \tilde{y} axes as its principal axes) to the second ellipse.
(d) Find an orthogonal (but not orthonormal) basis $\beta=\left\{v_{1}, v_{2}\right\}$ of \mathbb{R}^{2}, such that the matrix of Q with respect to β is the identity matrix. Hint: Use your diagonalization in part $3 b$.
Answer: Take $\widetilde{P}=P\left(\begin{array}{cc}\frac{1}{\sqrt{20}} & 0 \\ 0 & \frac{1}{\sqrt{5}}\end{array}\right)=\frac{1}{10}\left(\begin{array}{cc}2 & -2 \\ 1 & 4\end{array}\right)$. Then $\widetilde{P}^{t} S \widetilde{P}=I$.
4. Parts 4 c to 4 f below are independent of parts 4 a and 4 b .
(a) Let u_{1} and u_{2} be two unit vectors in \mathbb{R}^{3} and let $R_{u_{i}}$ be the reflection

$$
R_{u_{i}}(v)=v-2\left(u_{i}, v\right) u_{i}
$$

of \mathbb{R}^{3} with respect to the plane u_{i}^{\perp} orthogonal to u_{i}. Prove that the composition $R_{u_{2}} \circ R_{u_{1}}$ is a rotation of \mathbb{R}^{3}.
Answer: $R_{u_{i}}$ is an orthogonal transformation and $\operatorname{det}\left(R_{u_{i}}\right)=-1$. The composition of orthogonal transformations is an orthogonal transformation. Hence, $R_{u_{2}} \circ R_{u_{1}}$ is an orthogonal transformation. Its determinant is $\operatorname{det}\left(R_{u_{2}} \circ\right.$ $\left.R_{u_{1}}\right)=\operatorname{det}\left(R_{u_{2}}\right) \operatorname{det}\left(\circ R_{u_{1}}\right)=(-1)^{2}=1$. Hence, $R_{u_{2}} \circ R_{u_{1}}$ is a rotation.
(b) Let $u_{1}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right), u_{2}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$, and $A:=\left(\begin{array}{ccc}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Show that $R_{u_{2}} \circ R_{u_{1}}$ is equal to multiplication by the matrix A.
Answer: A straight forward calculation.
(c) Find a unit vector v_{1}, which spans the axis of the rotation of \mathbb{R}^{3} with matrix A given in part 4b.
Answer: The axis of the rotation is the eigenline with eigenvalue 1. It is spanned by the unit vector $v_{1}:=\frac{1}{\sqrt{3}}\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$.
(d) Set $v_{2}:=u_{1}$, where u_{1} is the vector in part 4 b . Complete it to an orthonormal basis $\left\{v_{2}, v_{3}\right\}$ of the plane v_{1}^{\perp} orthogonal to the axis of the rotation A.
Answer: A vector v is orthogonal to v_{1} and v_{2}, if and only if it is in the kernel of the matrix $\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$. Such is the unit vector $v_{3}:=\frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right)$.
(e) Find the matrix P of a rotation of \mathbb{R}^{3}, whose second column is the vector u_{1} in part 4 b , such that $P^{-1} A P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right)$ is in the normal form of the Structure Theorem for Orthogonal Transformations. Hint: The columns of P should be a suitable orthonormal basis of \mathbb{R}^{3} and $\operatorname{det}(P)=1$.

Answer: The matrix $P:=\left(v_{1} v_{2} v_{3}\right)=\left(\begin{array}{ccc}\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}}\end{array}\right)$ is orthogonal, of determinant 1 , hence the matrix of a rotation. $P\left(e_{1}\right)=v_{1}$, hence, $P^{-1} A P$ has the desired form, by Theorem (30.5) in the text.
(f) Show that the angle of the rotation A is $\theta=\frac{2 \pi}{3}$ or $\theta=\frac{-2 \pi}{3}$, depending on the sign of v_{1}.

Answer: The angle of rotation θ is the angle between v_{2} and $A v_{2}$ and $\cos (\theta)=$ $\left(A v_{2}, v_{2}\right)=-(1 / 2)$. The angle from $A v_{2}$ to v_{3} is $\pi / 2-\theta$ and $\sin (\theta)=\cos (\pi / 2-\theta)=$ $\left(A v_{2}, v_{3}\right)=-\sqrt{3} / 2$.
5. Find the solution $\left(y_{1}(t), y_{2}(t)\right)$ of the system

$$
\begin{aligned}
& \frac{\partial y_{1}}{\partial t}=y_{1}+y_{2} \\
& \frac{\partial y_{2}}{\partial t}=-y_{1}+3 y_{2}
\end{aligned}
$$

satisfying $y_{1}(0)=0$ and $y_{2}(0)=1$. Hint: The matrix A of the system satisfies $P^{-1} A P=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, where $P=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$.
Answer: The solution of the system of ordinary differential is $\binom{y_{1}(t)}{y_{2}(t)}=$ $e^{t A}\binom{0}{1}$. Now $A=P\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right) P^{-1}=P(2 I+N) P^{-1}$, where $N:=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Hence,

$$
e^{t A}=e^{t P(2 I+N) P^{-1}}=P e^{t(2 I+N)} P^{-1}=P\left(e^{2 t I} e^{t N}\right) P^{-1}
$$

Now $e^{t I}=\left(\begin{array}{cc}e^{2 t} & 0 \\ 0 & e^{2 t}\end{array}\right)$ and $e^{t N}=I+t N+\frac{1}{2} t^{2} N^{2}+\cdots$. The power N^{d} vanishes, for $d>1$, and so $e^{t N}=I+t N=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)$. Multiplying out we get $e^{t A}=$ $e^{2 t}\left(\begin{array}{cc}1-t & t \\ -t & 1+t\end{array}\right)$ and the final solution is: $\binom{y_{1}(t)}{y_{2}(t)}=\binom{t e^{2 t}}{(1+t) e^{2 t}}$.
6. Let $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ -7 & -1 & 4 \\ -2 & -1 & 3\end{array}\right)$ and work over the field \mathbb{R} of real numbers.
(a) Show that the characteristic polynomial of A is $(x-1)^{2}(x-2)$.
(b) Find a basis for each eigenspace of A.

Answer: $v_{1}:=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$ spans the 1-eigenspace and $v_{2}:=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ spans the 2-eigenspace.
(c) Check that each vector you found in part 6 b is indeed an eigenvector!

Answer: Chech that $A v_{1}=v_{1}$ and $A v_{2}=2 v_{2}$.
(d) Find the minimal polynomial of A. Justify your answer!

Answer: If the characteristic polynomial is the product $p_{1}(x)^{d_{1}} \cdots p_{r}(x)^{d_{r}}$, with $\left\{p_{1}, \ldots, p_{r}\right\}$ distinct monic prime polynomials, then $m(x)=p_{1}(x)^{e_{1}} \cdots p_{r}(x)^{e_{r}}$, where $1 \leq e_{i}$ and e_{i} is the minimal positive integer e, such that

$$
\operatorname{dim}\left(\operatorname{ker}\left[p_{i}(A)^{e}\right]\right)=d_{i} \operatorname{deg}\left(p_{i}(x)\right)
$$

as the right hand side above is the dimension of the direct summand $V_{i}:=$ ker $\left(p_{i}(A)^{e_{i}}\right)$, in the Primary Decomposition Theorem, by the Triangular Form Theorem.
Set $p_{1}(x)=x-1$ and $p_{2}(x)=x-2$. Then $1 \leq e_{2} \leq d_{2}=1$, so $e_{2}=1$. Now $1 \leq e_{1} \leq d_{1}=2$. In addition, $\operatorname{dim} \operatorname{ker}\left(p_{1}(A)\right)=\operatorname{dim} \operatorname{ker}(A-I)=1<d_{1}$. Hence, $e_{1}=2$ and

$$
m(x)=(x-1)^{2}(x-2)
$$

(e) Find a basis for each V_{i} in the Primary Decomposition $\mathbb{R}^{3}=V_{1} \oplus V_{2}$ with respect to A.
Answer: $V_{1}=\operatorname{ker}\left(p_{1}(A)^{e_{1}}\right)=\operatorname{ker}\left((A-I)^{2}\right)$ is spanned by $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$. $V_{2}=\operatorname{ker}\left(p_{2}(A)^{e_{2}}\right)=\operatorname{ker}(A-2 I)$ is spanned by v_{2} given in part 6 b above.
(f) Find the elementary divisors of A. Carefully justify your answer!

Answer: We need to find a subdecomposition, of each summand V_{1}, V_{2}, in the primary decomposition, into a direct sum of cyclic subspaces with respect to A. If $V_{i}=\left\langle u_{1}\right\rangle \oplus\left\langle u_{2}\right\rangle \oplus \cdots$, then the orders $m_{u_{1}}(x), m_{u_{2}}(x), \ldots$, are elementary divisors of A.
Now V_{2} is one dimensional and is hence cyclic. Thus, $p_{2}(x)=(x-2)$ is an elementary divisor.
Consider next the two dimensional V_{1}. Any vector w in V_{1}, which is not a 1-eigenvector, will have the property that $\{w, A w\}$ are linearly independent. Such a w exists, since V_{2} is two-dimensional and the 1-eigenspace is onedimensional. Hence, $V_{1}=\langle w\rangle$ is cyclic. The order $m_{w}(x)$ of w is the minimal polynomial of the restriction $A_{\langle w\rangle}$ of A to $\langle w\rangle$, i.e., to V_{1}. We have seen that the latter is $(x-1)^{2}$. Hence, $p_{1}(x)^{e_{1}}=(x-1)^{2}$ happens to be an elementary divisor as well.
Remark: The product of the elementary divisors is always equal to the characteristic polynomial. A homework problems was assigned, titled "continuation of problem 8 in section 25 , page 226 ". In that homework problem you proved that the summands in the primary decomposition are all cyclic, if and only if the minimal polynomial $m(x)$ is equal to the characteristic polynomial. In this case, the elementary divisors are simply the maximal prime powers which divide the minimal polynomial. However, you were expected to provide here a complete and more elementary justification.
(g) Find the Jordan canonical form of A.

Answer: The elementary divisors $p_{1}(x)^{e_{1}}:=(x-1)^{2}$ and $p_{2}(x)^{e_{2}}=(x-2)^{1}$ of A determine its Jordan Canonical Form (Theorem 25.16 and Definition 25.17). An elementary divisor of the form $(x-\lambda)^{e}$ contributes to the Jordan
canonical form an $e \times e$ block with λ_{i} in all its diagonal entries and 1 in all the entries immediately above the diagonal (see bottom of page 224 in the text). Thus, our Jordan canonical form is: $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
(h) Find an invertible matrix P, such that $P^{-1} A P$ is in Jordan canonical form. Describe your method in complete sentences! Credit will not be given to a solution found by trial and error.
Answer: We follow the procedure of Lemma 25.12, in the special case that all $d_{i}=1$ (the prime polynomials are all of degree 1 , but powers e_{i} may be positive). When $d=1$ and $\langle w\rangle$ is cyclic with elementary divisor $(x-\lambda)^{e}$, then we choose in Lemma 25.12 for $\langle w\rangle$ the basis

$$
\left\{(A-\lambda I)^{e-1} w,(A-\lambda I)^{e-2} w, \cdots,(A-\lambda I)^{1} w, w\right\}
$$

consisting of e vectors with this specific order.
In our case we can choose the cyclic vector $w=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left(w\right.$ is in V_{1}, but w is not a 1 -eigenvector). Then $(A-I) w=\left(\begin{array}{c}0 \\ -2 \\ -1\end{array}\right)$. For V_{2} we choose the 2 -eigenvector v_{2}. Take

$$
P=\left((A-I) w w v_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right) .
$$

Then $P^{-1} A P$ is in the Jordan canonical form in part 6 g .

