Additional problems for section 25

1. Let T be a linear transformation on a vector space V over the complex number field \mathbb{C} with a basis $\{u, v, w\}$, such that

$$
\begin{aligned}
T(u) & =u-v \\
T(v) & =u+3 v \\
T(w) & =-u-4 v-w
\end{aligned}
$$

(a) Find the elementary divisors of T.
(b) Find the Jordan canonical form of T.
(c) Find a basis v_{1}, v_{2}, v_{3}, of V, such that the matrix of T in this basis is the Jordan canonical form of T.
2. Continuation of Problem 8 from section 25 page 226
(a) Let A be a matrix, whose elementary divisors are

$$
\left\{p_{1}(x)^{e_{1,1}}, \ldots, p_{1}(x)^{e_{1, k_{1}}} ; p_{2}(x)^{e_{2,1}}, \ldots, p_{2}(x)^{e_{2, k_{2}}}, \ldots, p_{r}(x)^{e_{r, 1}}, \ldots, p_{r}(x)^{e_{r, k}, k_{r}}\right\}
$$

where $p_{i}(x), 1 \leq i \leq r$ are distinct prime polynomials, and $e_{i, j}$ are positive integers. Prove that the minimal polynomial of A is

$$
\begin{equation*}
m(x)=p_{1}(x)^{e_{1}} \cdot p_{2}(x)^{e_{2}} \cdots p_{r}(x)^{e_{r}}, \tag{1}
\end{equation*}
$$

where $e_{i}=\max \left\{e_{i, 1}, \ldots, e_{i, k_{i}}\right\}$. Hint: Let $f(x)$ be the polynomial on the right hand side of (1). Prove that $f(A)=0$. Prove also that $p_{i}(x)^{e_{i}}$ divides the minimal polynomial $m(x)$.
(b) Conclude, that if the minimal polynomial $m(x)$ of A is equal to the characteristic polynomial $h(x)$, then the elementary divisors of A are determined by $h(x)$. (See the Unique Factorization Theorem 20.18 page 171 in the text).
(c) Let A and B be two 2×2 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same minimal polynomial.
(d) Let A and B be two 3×3 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same characteristic polynomial $h(x)$ and the same minimal polynomial $m(x)$.
(e) Give an example of two 4×4 matrices A and B, which are not similar, but which have the same characteristic polynomial $h(x)$ and the same minimal polynomial $m(x)$.

