Additional problems for section 25

1. Let T be a linear transformation on a vector space V over the complex number field \mathbb{C} with a basis $\{u, v, w\}$, such that

$$T(u) = u - v$$

$$T(v) = u + 3v$$

$$T(w) = -u - 4v - w.$$

- (a) Find the elementary divisors of T.
- (b) Find the Jordan canonical form of T.
- (c) Find a basis v_1 , v_2 , v_3 , of V, such that the matrix of T in this basis is the Jordan canonical form of T.
- 2. Continuation of Problem 8 from section 25 page 226
 - (a) Let A be a matrix, whose elementary divisors are

$$\{p_1(x)^{e_{1,1}},\ldots,p_1(x)^{e_{1,k_1}};p_2(x)^{e_{2,1}},\ldots,p_2(x)^{e_{2,k_2}},\ldots,p_r(x)^{e_{r,1}},\ldots,p_r(x)^{e_{r,k_r}}\},$$

where $p_i(x)$, $1 \le i \le r$ are distinct prime polynomials, and $e_{i,j}$ are positive integers. Prove that the minimal polynomial of A is

$$m(x) = p_1(x)^{e_1} \cdot p_2(x)^{e_2} \cdots p_r(x)^{e_r},$$
 (1)

where $e_i = \max\{e_{i,1}, \ldots, e_{i,k_i}\}$. Hint: Let f(x) be the polynomial on the right hand side of (1). Prove that f(A) = 0. Prove also that $p_i(x)^{e_i}$ divides the minimal polynomial m(x).

- (b) Conclude, that if the minimal polynomial m(x) of A is equal to the characteristic polynomial h(x), then the elementary divisors of A are determined by h(x). (See the Unique Factorization Theorem 20.18 page 171 in the text).
- (c) Let A and B be two 2×2 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same minimal polynomial.
- (d) Let A and B be two 3×3 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same characteristic polynomial h(x) and the same minimal polynomial m(x).
- (e) Give an example of two 4×4 matrices A and B, which are **not** similar, but which have the same characteristic polynomial h(x) and the same minimal polynomial m(x).